
  

Jack Sparrow Publishers © 2025, IJCSER, All Rights Reserved                                                                                                         

www.jacksparrowpublishers.com                                                                                                                     1 

 

International Journal of Computational Science and Engineering Research  
ISSN: XXXX- XXXX(Online) , http://www.ijcser.com/ 

Regular Issue , Vol. 2, Issue. 2 ( April - June ), 2025 , Pages: 1 - 7  

Received: 15 January 2025 ;  Accepted: 29 March 2025 ;  Published: 12 April 2025.                                                    

Original Paper : Applied Research - Experimental Research Paper   

https://doi.org/10.63328/IJCSER-V2I2P1    
 

 

 

Patient Management System  
 

Ravichander Venkatareddygiri 1* , S. Dilli Babu 2  
 

1*  Department of  Computer Applications(MCA) , Mohan Babu University, Tirupathi, AP, India ; ravichander0999@gmail.com  
2 Department of  Computer Science and Engineering , Mohan Babu University, Tirupathi, AP, India ; dillibabusalvakkam@gmail.com  

  

* Corresponding Author: ravichander0999@gmail.com  

 
Abstract: Even if technology has been rapidly adopted in healthcare, a large number of small clinics still use outdated 

Patient Management Systems that do not offer much cloud integration, remote access, or communication tools. However, 

they hinder efficient patient data management and compliance in terms of security standards or quality care delivery. In 

this case, the project proposes a modern patient management system meant specifically for small clinics. It is a complete 

but light solution that will help in streamlining operations, improving patient care, and bettering the effectiveness of 

administration. The system uses cutting-edge technologies to buttress the gap and conversion from legacy systems in 

meeting modern healthcare demands. The patient management system will provide patient registration, schedule 

appointments, and hold video conferencing such that a clinic could handle interactions with patients while being able to 

assess timely online consultations. The backend ensures user authentication, file management, and data storage with 

secure and efficient Appwrite. Next.js, TypeScript, and TailwindCSS make up the frontend which responds in an intuitive 

interface across devices, improving the experience for healthcare providers and patients alike. Central to the system is 

secure data and compliance. It has met HIPAA standards, thus ensuring proper handling and storage of sensitive patient 

data. It also integrates with Sentry for real-time monitoring and error detection, enabling fast resolution of problems and 

continuous improvements in performance. The two major factors for this solution are cost and scalability. Unlike the 

over-burdened, complex traditional high-priced systems, this new PMS provides all essential features in a 

straightforward and affordable package. Hence, no small clinic would be turned away due to financial or operational 

encumbrance. 

Keywords: Liver, Patient, TailwindCSS, Cancer , Machine Learning.

 

1. Introduction   
 

The The healthcare improvement process is gaining more 

and more momentum. Such changes are primarily steered 

by technology and a host of issues that provide a 

transformational approach to how care is offered and 

provided. With all such advancements, a majority of small 

clinics are still using the much older Patient Management 

Systems that fall far short in meeting the demands of the 

modern healthcare industry. Because of their rigid 

infrastructure, these legacy systems do not have the 

expertise to perform some sophisticated operations that 

modern healthcare operations require, such as remote 

consultations, real-time data access, and compliance with 

robust data security provisions. Such limitations impact 

small clinics disproportionately given that they provide a 

significant role in the delivery of affordable healthcare 

services. These small operators, oftentimes starved of 

resources, simply cannot afford the expensive large-scale 

health management solutions. Hence, a handful still rely 

on these antiquated systems that lack key secret observe 

functionalities, thereby extending inefficiencies into care 

delivery and administrative operations. The increasing 

demand for digitization in healthcare makes developing 

robust, economical systems for small clinics very 

pertinent. The project creates a new-age Patient 

Management System to ease those pains through the 

application of modern techniques for a more streamlined, 

effective, and safe solution [1]. Customized for the clinical 

processes of small clinics, features include patient 

registration, appointment booking, and telemedicine 

options, while always pivoting toward data privacy 

compliance. 

 

1.1. Significance of the Project:  

 This a huge step toward digitalizing a small clinic. This 

will cover certain pain points like administrative 

workflow inefficiency, poor accessibility, 

https://doi.org/10.63328/IJCSER-V2I2P1
mailto:ravichander0999@gmail.com
mailto:dillibabusalvakkam@gmail.com
mailto:ravichander0999@gmail.com


International Journal of Computational Science and Engineering Sciences                          Ravichander Venkatareddygiri et, al.                                                                          

Vol. 2, Issue  2, 2025, https://doi.org/10.63328/IJCSER-V2I2P1    

Jack Sparrow Publishers © 2025, IJCSER, All Rights Reserved                                                                                                         

www.jacksparrowpublishers.com                                                                                                                     
2 

data security loopholes, and relieve clinics from 

administrative stress and hassle, thus allowing clinics to 

focus more on caring for their patients [2]. The 

telemedicine functionalities line up the clinics with new 

trends in healthcare, such as the rise of remote 

consultations. Emphasis on security and compliance, i.e., 

this system safely keeps patient information while 

ensuring various digital healthcare compliances. 

Especially important now more than ever in building trust 

with patients who expect their healthcare provider to take 

data security and privacy seriously. 

 

2. Overview of System Design 

 

In system design. The Patient Management System (PMS) 

is targeted toward smaller clinics while encompassing 

patient registration, appointment scheduling, and video 

conferencing. It is covered by a three-layer architecture-

consisting of presentation, business logic, and data. 

Next.js, TypeScript, and Tailwind are being used at the 

presentation end to provide responsiveness and mobile 

compatibility. The Workstay solution enforces the security 

policy for authentication, storage of data, and file 

management [3], with the Appwrite server for the 

Workstay all Appwrite handles all in-house user and file 

management and service integration for SMS and Tele 

conferencing. That database storing patient and system 

data implements various security capabilities to maintain 

HIPAA compliance via encryption and query efficiency. It 

will ensure reliability with real-time error logging and 

performance tracking using Sentry. The modular design 

allows scaling with less cost and great flexibility for 

enhancement in the future. 

 

2.1. System Architecture Description 

 

Frontend uses Next.js for server-side rendering (SSR) to 

speed things up and improve SEO. TypeScript boosts code 

quality through type-checking; on the other hand, 

TailwindCSS allows rapid responsiveness and extensive 

customization for UI. Frontend and backend are 

communicating and exchanging data through secure REST 

APIs for things like patient management, appointments, 

and video consultations [4]. 

 

2.1.1 Frontend layer: Next.js does server-side rendering to 

allow fast loading times and to be on the good side of the 

SEO. TypeScript implements type safety, whereas 

TailwindCSS allows rapid customization of UI along with 

responsiveness. Patient, doctor, and admin interactions of 

frontend are handled through secure APIs. 

 

2.1.2 Backend Layer: Appwrite is being used in the 

backend, which is an open-source BaaS that gives user 

authentication, data storage, and business logic. Role-

based access control is provided to distinguish privileges. 

File management and integration of external services for 

SMS and video conferencing are handled internally by 

Appwrite APIs. 

 

2.1.3. Database Layer:  The database is securely keeping 

patient records, doctors' profiles, and appointment 

arrangements. Encryption at rest and in transit provide for 

full HIPAA compliance. Efficient querying allows for 

instantaneous retrieval of data. Backup and disaster 

recovery ensure the integrity of data. 

 

2.2. External Services and Monitoring: Sentry for real-time 

error monitoring, a third-party API for SMS notifications 

and video conferencing in support of telemedicine and 

patient engagement. 

 

2.3.Communication Flow: Users interact with the 

frontend, issuing requests to the back end-the back end 

authenticates users, legislates requests, and interacts with 

the database, from which it retrieves data. The interaction 

between the back end and external services for monitoring 

services and video conferencing adds another dimension 

to the whole system [5]. The modular architecture 

incorporates strong security facilities, performance, and 

scalability thus making PMS a strong and flexible yet cost-

effective tool for small clinics. 

 

3. Proposed System Model 
 
Patient Portal: Where patients can register, schedule an 

appointment, and even view their own information. 

 

Doctor Portal: Managed by Doctors to maintain their 

calendar, view patient data, and manage appointments. 

3. Admin Dashboard: Managed by the admin to validate 

the doctor's profile before managing the appointments and 

overseeing complete system management. 

 

Controller Layer: 

 Patient Controller: Responds to actions on the 

patient portal including registering, scheduling an 

appointment, or viewing patient history. Collects or 

updates data through communication with Patient 

Model and Appointment Model. 

 Doctor Controller: Processes all the requests from the 

doctor portal like schedule viewing and managing 

patient consultation. This model interacts with the 

Doctor Model for data retrieval and availability 

updates of the doctor. 

 Admin Controller: Involves all administrative affairs 

which consist doctor registration as well as 

appointment system checks. It interacts with the 

Doctor Model and Appointment Model for the 

management of the system. 

 

 

https://doi.org/10.63328/IJCSER-V2I2P1


International Journal of Computational Science and Engineering Sciences                          Ravichander Venkatareddygiri et, al.                                                                          

Vol. 2, Issue  2, 2025, https://doi.org/10.63328/IJCSER-V2I2P1    

Jack Sparrow Publishers © 2025, IJCSER, All Rights Reserved                                                                                                         

www.jacksparrowpublishers.com                                                                                                                     
3 

Model Layer 

 Patient Model: It contains and retains all personal as 

well as medical history data concerning every patient. 

 Doctor Model: It keeps the records of doctor data such 

as profiles, schedules, and areas of specialization [6]. 

 Appointment Model: Holds pieces of information 

regarding appointments such as the time slots, 

patient-doctor mapping, and status (Figure.1). 

 

 
     

Figure.1: Explanation of the MVC Controller for PMS View Layer  
 

4. Experimental Results 

4.1. Implementation of the Patient Management System 

(PMS):  The PMS is a contemporary web app that exploits 

the latest technologies to overcome the limitations 

ingrained in traditional systems. This section will present 

the key implementation facets of the PMS, namely the 

front end, the back end, video conferencing, and 

performance monitoring, with snippets highlighting the 

important parts of the implementation [7].  

 

4.2 Frontend Implementation:  Front-end PMS was built in 

Next.js, TypeScript, and TailwindCSS, such that it would 

be responsive and user-oriented. Most pertinent attributes 

and their respective implementation are discussed in the 

section. 

 
Figure.2: Controller for Frontend view PMS 

4.2.1 Patient Registration:  Patient registration is a 

primary feature that allows users build accounts by 

entering their names, ages, contact numbers [8], and then 

proceeds with medical history(Figure.2). The form 

validates the client's entry for accuracy and completeness 

at the client-end. 

Code Snippet: Patient Registration Form 

"use client"; 

import { zodResolver } from 

"@hookform/resolvers/zod"; 

import { useRouter } from "next/navigation"; 

import { useState } from "react"; 

import { useForm } from "react-hook-form"; 

import { z } from "zod"; 

import { Form } from "@/components/ui/form"; 

import { createUser } from 

"@/lib/actions/patient.actions"; 

import { UserFormValidation } from 

"@/lib/validation"; 

import "react-phone-number-input/style.css"; 

import CustomFormField, { FormFieldType } 

from "../CustomFormField"; 

import SubmitButton from "../SubmitButton"; 

export const PatientForm = () => { 

  const router = useRouter(); 

  const [isLoading, setIsLoading] = 

useState(false); 

  const form = useForm<z.infer<typeof 

UserFormValidation>>({ 

    resolver: 

zodResolver(UserFormValidation), 

    defaultValues: { name: "", email: "", 

phone: "" }, 

  }); 

  const onSubmit = async (values: 

z.infer<typeof UserFormValidation>) => { 

    setIsLoading(true); 

    try { 

      const newUser = await 

createUser(values); 

      if(newUser) 

router.push(`/patients/${newUser.$id}/registe

r`); 

    } catch (error) { 

      console.log(error);} 

    setIsLoading(false); }; 

  return ( 

    <Form {...form}> 

      <form 

onSubmit={form.handleSubmit(onSubmit)} 

className="space-y-6"> 

        <CustomFormField 

fieldType={FormFieldType.INPUT} 

control={form.control} name="name" 

label="Full name" /> 

        <CustomFormField 

fieldType={FormFieldType.INPUT} 

control={form.control} name="email" 

label="Email" /> 

        <CustomFormField 

fieldType={FormFieldType.PHONE_INPUT} 

control={form.control} name="phone" 

label="Phone" /> 

        <SubmitButton 

isLoading={isLoading}>Get 

Started</SubmitButton> 

      </form> 

    </Form> 

  );}; 

 

4.2.2 Appointment Scheduling:  Patients have the 

opportunity to check time slots available for their 

appointments with their chosen physician [9]. The 

https://doi.org/10.63328/IJCSER-V2I2P1


International Journal of Computational Science and Engineering Sciences                          Ravichander Venkatareddygiri et, al.                                                                          

Vol. 2, Issue  2, 2025, https://doi.org/10.63328/IJCSER-V2I2P1    

Jack Sparrow Publishers © 2025, IJCSER, All Rights Reserved                                                                                                         

www.jacksparrowpublishers.com                                                                                                                     
4 

interface with real-time feedback ensures that the patient 

is satisfied. 

Code Snippet: Appointment Scheduling UI 
"use client"; 

import { useState } from "react"; 

import { Button } from 

"@/components/ui/button"; 

import { Dialog, DialogContent, 

DialogHeader, DialogTitle, DialogTrigger 

} from "@/components/ui/dialog"; 

import { AppointmentForm } from 

"./forms/AppointmentForm"; 

import "react-datepicker/dist/react-

datepicker.css"; 

export const AppointmentModal = ({ 

patientId, userId, type, appointment }) 

=> { 

  const [open, setOpen] = 

useState(false); 

  return ( 

    <Dialog open={open} 

onOpenChange={setOpen}> 

      <DialogTrigger asChild> 

        <Button variant="ghost" 

className={`capitalize ${type === 

"schedule" && "text-green-500"}`}> 

          {type} 

        </Button> 

      </DialogTrigger> 

      <DialogContent className="shad-

dialog sm:max-w-md"> 

        <DialogHeader> 

          <DialogTitle 

className="capitalize">{type} 

Appointment</DialogTitle> 

        </DialogHeader> 

        <AppointmentForm userId={userId} 

patientId={patientId} type={type} 

appointment={appointment} 

setOpen={setOpen} /> 

      </DialogContent> 

    </Dialog> 

  );}; 

 

4.3 Backend Implementation 

The PMS backend was built using Appwrite, a secure 

and scalable backend platform. Key features include 

user authentication [10], data management, and 

integration with external APIs.  

4.3.1 User Authentication and Data Storage 

That offers reliable user authentication and means for 

storing patient and doctor data. Patient records, 

appointments, and medical files are stored in 

structured collections. 

Code Registration API Snippet: Patient  

const sdk = require("node-appwrite"); 

module.exports = async (req, res) => { 

  const client = new sdk.Client(); 

  const database = new sdk.Database(client); 

  client 

    .setEndpoint("http://localhost/v1") 

    .setProject("YOUR_PROJECT_ID") 

    .setKey("YOUR_API_KEY"); 

  const { name, age, email, phone, medicalHistory } = 

req.body; 

  try { 

    const response = await 

database.createDocument("patients", "unique()", { 

      name, age, email, phone, medicalHistory 

    }); 

    res.status(200).json(response); 

  } catch (error) { 

    res.status(500).json({ error: error.message }); 

  } }; 

4.3.2 Integration of Video Conferencing 

Telemedicine functionalities are set using third-party 

video conferencing APIs that allow consultations 

between doctors and patients online. 

Code Snippet: Video Consultation Initialization 

const axios = require("axios"); 

module.exports = async (req, res) => { 

  const { doctorId, patientId } = req.body; 

  try { 

    const response = await axios.post("https://video-

api.com/create-room", { 

      doctorId, patientId, 

    }); 

    res.status(200).json({roomLink: 

response.data.roomLink }); 

  } catch (error) { 

    res.status(500).json({ error: error.message }); 

  }}; 

 

4.3.3 Performance Monitoring with Sentry 

Performance monitoring and error monitoring are 

achieved by Sentry in the interest of providing end-users 

with a hitch-free experience and in instantly fixing issues. 

Code Snippet: Sentry Setup 

const Sentry = require("@sentry/node"); 

Sentry.init({ 

dsn: "YOUR_SENTRY_DSN", 

tracesSampleRate: 1.0, 

}); 

try { 

} catch (error) { 

 Sentry.captureException(error);} 

 

The PMS implementation shows that modern technologies 

could achieve integration for a scalable, secure, and 

efficient system. Thanks to Next.js for developing a 

responsive UI, Appwrite for handling backend 

management, and Sentry for monitoring, the PMS boasts 

heavy-lifting capabilities targeted at small and local 

healthcare service providers [11]. 
 
 

https://doi.org/10.63328/IJCSER-V2I2P1


International Journal of Computational Science and Engineering Sciences                          Ravichander Venkatareddygiri et, al.                                                                          

Vol. 2, Issue  2, 2025, https://doi.org/10.63328/IJCSER-V2I2P1    

Jack Sparrow Publishers © 2025, IJCSER, All Rights Reserved                                                                                                         

www.jacksparrowpublishers.com                                                                                                                     
5 

   5. Related Work  

With these features, PMS collects, stores, and processes 

patient data including their appointments and 

consultations with doctors:  

 

5.1.Patient Registration and Profile Management: Patients 

will create and maintain their own profiles, which will 

contain personal information, contact details, and medical 

history. The system provides simplicity in examination 

and management of patient data for the timely and 

applicable decisions by the healthcare provider. It allows 

profile updates while ensuring secure access, and 

authentication protects sensitive information[12]. 

 

5.2. Management of Appointment Scheduling : Patients can 

proceed to schedule, change, and even postpone or cancel 

appointment bookings. Medical appointment reminders 

are automated for less missed consultations. Hence, 

doctors are maintaining their availability, and all 

appointments are recorded for future reference. 

 

5.3. Registration of doctors and verification of doctors: 

There are several profiles registered by doctors with 

qualifications, specializations, and certifications. They are 

verified by the admins for allowing a professional to 

consult patients. A doctor can update his profile for new 

certification [13]. 

 

5.4. Telemedical Video Consultations: Video consultations 

are done in real-time. They provide tele-face consultations 

using the video conferencing software like Zoom and Jitsi. 

Once the doctor agrees to the request for consultation, the 

patient is forwarded a link to the video. Other modes of 

communication that can be used are screen sharing, 

document exchange, and chat. 

 

5.5. SMS Notifications on Appointment Confirmation: 

These are automated SMS reminders which will confirm 

appointments, thus helping in reducing no-shows. 

Cancellation or rescheduling of appointments would send 

updates to patients and doctors, while follow-up 

reminders will encourage adherence to prescriptions and 

visits. 

 

5.6. File Upload via Appwrite Storage: Patients and 

doctors can upload, as well as retrieve, medical documents 

including test reports in an authorized manner. Appwrite 

encrypts data, thus restricting access transferred 

confidentiality, while compliant with the required 

regulations [14].  

 

5.7. Performance Monitoring and Error Handling using 

Sentry : Sentry tracks bugs and validates them due to real-

time error tracking exceptions with performance issues. 

Therefore, it raises alerts to the developers regarding the 

errors to effect immediate fixes to ensure the PMS stable 

and reliable operations with less downtime [15]. 

 

5.8. Responsive Design for platform optimization:  

Designed and built in TailwindCSS and Next.js, it adapts 

across desktops, tables, and smartphones. The mobile-first 

design transforms usability for booking, profile editing, 

and teleconsultations across a variety of screen real estate 

 

  6. Results and Evaluation 

The Patient Management System (PMS) testifies 

significant results that prove it has merit and is usable in 

healthcare management. One of the major achievements is 

the improved efficiency in the appointment scheduling 

and patient registration process. The system reduces the 

time for performing these tasks since the whole manual 

processes are automated and an easy user interface is 

provided. Patients get appointments within seconds, 

whereas doctors and administrators can manage 

schedules effortlessly through the backend, hence 

improving the overall operational productivity. The PMS 

was practically tested with changing loads scalably and 

performed well in terms of appointment booking alone 

because different situations were simulated-from small 

clinics to larger setups.  

 

  7. Restriction and Challenge 
 

7.1. Implementation of Compliance with HIPAA: The 

safeguarding of patient data through such measures as 

encrypting the data, secure means of transferring the data, 

and making it accessible to authorized personnel is very 

challenging as it mainly concerns HIPAA compliance. 

Security measures make it difficult to use the entire system 

easily. Multiple security audits were performed on the 

project to check compliance. 

 

7.2. Integrating Telemedicine: Difficulty came in including 

telemedicine, especially video consultations, because it 

required extensive network optimization, video 

compression, as well as integration with other third-party 

platforms to have high-quality audio and video at a low 

latency, even in areas that are not well connected. 

 

7.3. Inadequate Testing in the Real World: Most testing 

done because little access to real clinics was mostly done 

in a simulated environment. This made it difficult to 

assess how theoretically the system would fair with 

several other factors in real-world scenarios such as 

overlapping schedules and workflows of clinics, thus 

increasing the chances of unrealized bugs post-

deployment or performance issues. 

 

7.4 Improvements to Follow: Future versions of this 

system should also add modules for 

https://doi.org/10.63328/IJCSER-V2I2P1


International Journal of Computational Science and Engineering Sciences                          Ravichander Venkatareddygiri et, al.                                                                          

Vol. 2, Issue  2, 2025, https://doi.org/10.63328/IJCSER-V2I2P1    

Jack Sparrow Publishers © 2025, IJCSER, All Rights Reserved                                                                                                         

www.jacksparrowpublishers.com                                                                                                                     
6 

patient health records functionalities, which will store all 

information pertaining to a patient's medical history, 

prescription drugs and treatment plans, thus eventually 

further improving the quality of care. Diagnosis based on 

AI may help with real-time insights during consultations, 

and AI-based scheduling may be used for optimal 

resource allocation.  

 

7.5. Balancing Security and Usability: Security versus 

usability is a very hot topic. The system would have to 

have very strong encryption as well as HIPAA compliance 

while remaining intuitive to non-technical staff in smaller 

clinics. That would always remain a pledge. 

 

  8. Conclusion and Future Scope  

The Patient Management System (PMS) provides a 

scalable setup for clinics to safely keep and manage 

patient data, appointments, and telemedicine. This has 

been built using Appwrite, Next.js, TypeScript, and 

TailwindCSS to ensure user-friendliness without 

compromising security or performance. Core features 

include SMS notifications, video consults, and real-time 

monitoring via Sentry, making the PMS a very flexible 

instrument in healthcare management. 

 

The challenges posed by HIPAA compliance, telemedicine 

optimization, and insufficient world testing were handled 

adequately through the route of planning and testing in a 

secure cloud infrastructure. Future improvements could 

include patient health records management and AI-based 

diagnostic assistance, enhancing clinical effectiveness. 

Unlike traditional systems, this system differs because it 

uses modern technology coupled with a user-oriented 

interface to meet the demand for telemedicine and secure 

healthcare services. This takes a step towards the cloud for 

patient care, empowering clinics with such technology 

while ensuring data privacy. With further real-time 

testing, it can be a stronger instrument for healthcare 

providers and patients. 

 

Declaration 
 

Conflicts of Interest:  The authors declare no conflict of 

interest. 

Author contribution: All authors wrote the main 

manuscript text and also consent to the submission 

Ethical approval: Not applicable. 

Consent to Participate: All authors consent to participate. 

Funding: Not applicable, and No funding was received 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Personal Statement: We Declare with our best of 

Knowledge that this research  work is purely Original 

Work and No third party material Not used in this article 

drafting. If any such kind material found in further online 

publication, we are responsible only for any judicial and 

copyright issues. 

  

References  

[1]. A Web-based Patient Record and Appointment 

Management System IEEE. (n.d.). A Web-based 

Patient Record and Appointment Management 

System. Retrieved from 

https://ieeexplore.ieee.org/document/804398 

[2]. Designing a Flow-based Mechanism for Accessing 

Electronic Health Records on a Cloud Environment, 

IEEE. (2022). Designing a Flow-based Mechanism for 

Accessing Electronic Health Records on a Cloud 

Environment. Retrieved from 

https://ieeexplore.ieee.org/abstract/document/1024693

3 

[3]. PRMS: Design and Development of Patients E-

Healthcare Records Management System for Privacy 

Preservation in Third Party Cloud Platforms, IEEE. 

(2022). PRMS: Design and Development of Patients E-

Healthcare Records Management System for Privacy 

Preservation in Third Party Cloud Platforms. 

Retrieved from 

https://ieeexplore.ieee.org/abstract/document/9854886 

[4]. Security-Aware Department Matching and Doctor 

Searching for Online Appointment Registration 

System, IEEE. (2019). Security-Aware Department 

Matching and Doctor Searching for Online 

Appointment Registration System. Retrieved from 

https://ieeexplore.ieee.org/abstract/document/8666707 

[5]. REMOTE PATIENT MONITORING SYSTEM, 

International Journal of Distributed and Parallel 

Systems. (2012). REMOTE PATIENT MONITORING 

SYSTEM. Retrieved from 

https://www.academia.edu/download/37863484/3512ij

dps09.pdf 

[6]. A Secured Cloud based Health Care Data 

Management System International Journal of 

Computer Applications. (2012). A Secured Cloud 

based Health Care Data Management System. 

Retrieved from 

https://www.researchgate.net/profile/Nafiul-

Rashid/publication/314879090 

[7]. A Conceptual Framework to Ensure Privacy in Patient 

Record Management System IEEE. (2021). A 

Conceptual Framework to Ensure Privacy in Patient 

Record Management System. Retrieved from 

https://ieeexplore.ieee.org/abstract/document/9646903 

[8]. Patient Health Record Protection Beyond the Health 

Insurance Portability and Accountability Act: Mixed 

Methods Study, Journal of Medical Internet Research. 

(2024). Patient Health Record Protection Beyond the 

Health Insurance Portability and 

https://doi.org/10.63328/IJCSER-V2I2P1


International Journal of Computational Science and Engineering Sciences                          Ravichander Venkatareddygiri et, al.                                                                          

Vol. 2, Issue  2, 2025, https://doi.org/10.63328/IJCSER-V2I2P1    

Jack Sparrow Publishers © 2025, IJCSER, All Rights Reserved                                                                                                         

www.jacksparrowpublishers.com                                                                                                                     
7 

Accountability Act: Mixed Methods Study. Retrieved 

from https://www.jmir.org/2024/1/e59674/ 

[9]. BAMHealthCloud: A Biometric Authentication 

System for Healthcare Data in the Cloud Journal of 

King Saud University - Computer and Information 

Sciences. (2017). BAMHealthCloud: A Biometric 

Authentication System for Healthcare Data in the 

Cloud. Retrieved from 

https://www.sciencedirect.com/science/article/pii/S131

9157817301143 

[10]. Cloud-based Healthcare Data Management 

Framework KSII Transactions on Internet and 

Information Systems. (2020). Cloud-based Healthcare 

Data Management Framework. Retrieved from 

https://koreascience.kr/article/JAKO202011161035789.

page 

[11]. A Secure Framework For Enhancing Data Privacy 

And Access Control In Healthcare Cloud Management 

Systems Educational Administration: Theory and 

Practice. (2024). A Secure Framework for Enhancing 

Data Privacy and Access Control in Healthcare Cloud 

Management Systems. Retrieved from 

https://kuey.net/index.php/kuey/article/view/5783 

[12]. Security and Privacy in Cloud-Based E-Health 

System, MDPI. (2021). Security and Privacy in Cloud-

Based E-Health System. Retrieved from 

https://doi.org/10.3390/sym13050742 

[13]. A reliable authentication scheme of personal 

health records in cloud computing Wireless Networks. 

(2021). A reliable authentication scheme of personal 

health records in cloud computing. Retrieved from 

https://link.springer.com/article/10.1007/s11276-021-

02743-7 

[14]. Cybersecurity In Healthcare: Securing Patient 

Health Information (Phi), Hippa Compliance 

Framework And The Responsibilities Of Healthcare 

Providers 

[15]. Journal of Knowledge Learning and Science 

Technology. (2024), 

https://jklst.org/index.php/home/article/view/259/233 

 

https://doi.org/10.63328/IJCSER-V2I2P1

	4. Experimental Results
	5. Related Work
	6. Results and Evaluation

