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Abstract: Kidney diseases such as cysts, stones, and tumors are among the most prevalent health issues worldwide. Early 

and accurate diagnosis is critical to preventing severe complications, and computed tomography (CT) imaging plays a 

key role in this process. However, manual interpretation of CT scans is time-consuming and prone to subjectivity. To 

address this, we propose a hybrid deep learning model combining Convolutional Neural Networks (CNN) and Long 

Short-Term Memory (LSTM) units for the automated multiclass classification of kidney diseases using CT images. The 

CNN component extracts spatial features from the input scans, while the LSTM layers model spatial dependencies and 

enhance the learning of complex patterns. The model was trained and evaluated on a curated dataset consisting of four 

kidney conditions: Cyst, Normal, Stone, and Tumor. Extensive experimentation demonstrates that the proposed CNN- 

LSTM model achieves a classification accuracy of 99.6%, with precision, recall, and F1-score values exceeding 99% across 

all classes. Additionally, Gradient-weighted Class Activation Mapping (Grad-CAM) is employed for model 

interpretability, enabling visualization of discriminative regions in the images responsible for predictions. The results 

indicate the potential of the model to serve as a reliable decision-support tool for radiologists and clinicians. This 

framework paves the way for enhanced diagnostic accuracy and faster clinical workflows in nephrological imaging. 
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1. Introduction   
 

Kidney diseases constitute a growing global health 

concern, affecting millions of people annually and 

contributing significantly to both morbidity and mortality 

rates. Common renal pathologies include kidney cysts, 

calculi (stones), and tumors, each of which necessitates 

timely and accurate diagnosis to ensure effective treatment 

and favourable patient outcomes. The clinical management 

of these conditions depends heavily on diagnostic imaging, 

among which computed tomography (CT) scans are 

particularly valued for their high-resolution, cross- 

sectional views of renal structures. CT imaging facilitates 

the detection of abnormalities in size, shape, texture, and 

internal composition of the kidneys, enabling clinicians to 

identify subtle pathological changes. However, despite its 

diagnostic power, manual analysis of CT images remains a 

complex and time-intensive task, often hindered by inter-

observer variability and the potential for human error. In 

recent years, the field of artificial intelligence (AI), and 

more specifically deep learning (DL), has emerged as a 

powerful solution to many challenges in medical image 

analysis. Deep learning models have shown remarkable 

success in recognizing complex patterns within large 

datasets, thereby reducing reliance on manual 

interpretation and increasing diagnostic throughput. 

Convolutional Neural Networks (CNNs), in particular, 

have become the de facto standard for image-based 

classification tasks due to their hierarchical feature 

extraction capabilities. CNNs automatically learn spatial 

hierarchies of features, ranging from simple edges and 

textures to high-level semantic structures. This has made 

them especially effective in analyzing medical images, 

where subtle variations can have critical diagnostic 

implications. 

While CNNs are highly effective in extracting spatial 

features, they are limited in capturing temporal or 

sequential dependencies that might exist in structured or 

spatially correlated inputs, such as image patches within 

medical scans. To overcome this limitation, Recurrent 

Neural Networks (RNNs), particularly Long Short-Term 

Memory (LSTM) networks, have been explored for their 

ability to model long-range dependencies in sequential 

data. LSTMs are designed to retain and 
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propagate information over extended sequences, making 

them useful for tasks where context and temporal structure 

are essential. When combined, CNNs and LSTMs can form 

a powerful hybrid architecture that leverages the strengths 

of both models: CNNs for spatial feature extraction and 

LSTMs for contextual understanding of those features. In 

this study, we propose a hybrid CNN-LSTM 

architecture for the multiclass classification of kidney 

diseases using CT images. The architecture begins with a 

CNN backbone that learns rich feature representations 

from CT scans.  

These spatial features are then reshaped into sequences 

and passed through LSTM layers, allowing the model to 

capture higher- order dependencies and improve its 

discrimination between similar pathological classes. This 

design enables the model to not only extract powerful local 

features but also understand the spatial context across the 

image, which is particularly important in complex medical 

diagnosis scenarios. We evaluate our model on a 

comprehensive dataset comprising CT images representing 

four distinct kidney conditions: Cyst, Normal, Stone, and 

Tumor. The dataset is balanced across categories and 

contains high-resolution images suitable for deep learning-

based analysis. The data is pre-processed using a 

MobileNetV2-based image normalization technique, and 

augmented to enhance generalization and mitigate 

overfitting. Following a standardized training-validation-

testing pipeline, the model is trained using categorical 

cross-entropy loss with Adam optimization, achieving 

excellent convergence within ten epochs. 

The significance of our work lies in its potential for real- 

world application. By providing automated, high-accuracy 

classification of kidney diseases from CT scans, our model 

can serve as a decision support system for radiologists and 

nephrologists, particularly in resource-constrained settings. 

It can reduce diagnostic time, assist in second-opinion 

evaluations, and provide consistent assessments free from 

human bias or fatigue. Furthermore, the use of 

interpretable AI tools like Grad-CAM ensures that the 

decision-making process remains transparent and clinically 

meaningful. This research builds upon and extends the 

body of work in deep learning for medical imaging. 

Previous studies have demonstrated the effectiveness of 

CNNs for binary classification tasks involving kidney 

stones or tumors.  

However, few have explored multiclass classification 

encompassing a broader range of conditions, and even 

fewer have combined CNNs with LSTMs for this purpose. 

Our hybrid approach addresses this gap, offering 

improved performance and enhanced contextual 

understanding of complex kidney abnormalities. In 

summary, this study presents a robust and interpretable 

deep learning framework for multiclass classification of 

kidney diseases from CT images. The integration of CNNs 

and LSTMs enables both feature richness and contextual 

depth, while Grad-CAM provides clinical interpretability. 

The high accuracy and strong evaluation metrics achieved 

on a diverse dataset validate the model’s potential for 

deployment in clinical settings. Future work may involve 

extending this framework to 3D volumetric CT scans, 

integrating patient metadata, or deploying the model in 

real-time diagnostic systems. 

 2. Related Work and Literature Survey 

Jadhav et al. [1] proposed a hybrid CNN-LSTM model 

for the early detection of kidney stones using CT images. 

Their approach leverages CNN for spatial feature 

extraction and LSTM for learning temporal dependencies 

in the medical images. This fusion enables robust detection 

by preserving the sequential imaging context. The model 

demonstrated high accuracy and performance in classifying 

kidney stone presence across different stages. Notably, the 

authors emphasized real- time deployment potential and 

clinical application to improve diagnostic reliability.  

Lalitha et al. [2] introduced a novel CNN-attention-based 

method for classifying kidney stones using MRI data. The 

model incorporates attention mechanisms to focus on 

relevant regions of interest, improving classification 

accuracy and interpretability. The authors utilized a 

tailored convolutional architecture optimized for medical 

imaging and reported improved performance compared 

to baseline CNNs.  

Zhu et al. [3] presented an LSTM-based model that utilizes 

adaptive feature weighting for kidney stone identification 

from urine and blood routine analyses. Instead of relying 

solely on imaging, their approach incorporates laboratory 

data, enabling non-invasive detection. The model assigns 

dynamic weights to features based on their importance, 

enhancing interpretability and prediction precision. Yildiz 

et al. [4] explored the diagnosis of chronic kidney disease 

(CKD) using a hybrid CNN-LSTM model. Their model was 

trained on a structured dataset and exhibited superior 

performance over traditional classifiers. The integration of 

CNN and LSTM proved beneficial for both accuracy and 

interpretability.  

Senthil et al. [5] proposed a blockchain-enabled 

intelligent system for kidney stone prediction, combining 

deep learning and augmented reality. Blockchain ensures 

secure data manage- ment, while AR enhances 

visualization, making their system suitable for 

telemedicine and mobile diagnostics. Maniyar et al. [6] 

implemented a CNN-based approach for classifying  

kidney diseases using CT scan images . Their model 

showcased high sensitivity and specificity, with minimal 

preprocessing, demonstrating the robustness of CNNs in 

medical imaging.  

Saif et al. [7] proposed an ensemble of deep learning 

models optimized with multiple optimizers for early CKD 

prediction. Their framework improves 
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generalizability and ad- dresses class imbalance and 

overfitting challenges. Liu et al. [8] designed a CNN-based 

model for urolithiasis detection using KUB images. Their 

system aids radiologists in identifying subtle stone 

formations with high diagnostic accuracy even with 

limited training data.  

Davamani et al. [9] introduced a deep CNN-based 

architecture for kidney disease detection. Their system was 

benchmarked against traditional models and demonstrated 

superior performance using multiple imaging datasets.  

Ibrahim et al. [10] explored an attended CNN-LSTM model 

to predict bladder cancer recurrence and treatment 

response. While focused on bladder cancer, the model 

architecture holds relevance for kidney diagnostics due to 

its sequential and attention-based design.  

Seddiki et al. [11] pro- posed an end-to-end CNN–LSTM 

model for disease diagnosis using mass spectrometry data. 

Their framework demonstrated strong classification 

performance and highlights transferable architecture 

potential for kidney diagnostics.  

Balachander et al. [12] developed a hybrid CNN model for 

early gastric cancer detection, but their spatially focused 

design has direct relevance to kidney stone identification in 

medical imaging.  

Singh et al. [13] proposed a classical image segmentation 

and radial transform-based method for kidney stone 

detection. Though not deep learning-based, it provides 

efficient boundary localization, suitable for hybrid 

diagnostic systems.  

Kursun et al. [14] utilized deep features from SqueezeNet, 

a lightweight CNN model, combined with traditional 

classifiers for kidney disease detection. This allows for 

portable, edge-device deployment.  

Seoni et al. [15] proposed a CNN-BiLSTM model with a 

spatial uncertainty predictor for classifying coronary artery 

disease using ECG signals. Their uncertainty-aware de- 

sign can inspire similar kidney diagnostics involving 

temporal clinical data. 

 

3. Proposed Method 

This section outlines the methodology adopted in develop- 

ing the proposed CNN-LSTM model for multiclass 

classifica- tion of kidney diseases from CT scan images. 

The methodol- ogy comprises data preprocessing, 

architecture design, training procedure, and evaluation 

strategy. A hybrid architecture is proposed to combine the 

spatial feature extraction power of Convolutional Neural 

Networks (CNNs) with the temporal sequence modeling 

capability of Long Short-Term Memory (LSTM) networks. 

The workflow is illustrated in Fig. 1.  

4. Work Flow 

 

Figure.1 Architecture Workflow of the Diagram 

  

5. Methodology 

  Dataset Description 

    The dataset employed in this research consists of 3,734 

CT scan images categorized into four classes: Cyst (1,118 

images), Normal (1,534 images), Stone (428 images), and 

Tumor (654 images) as shown 2. These images represent a 

wide spectrum of kidney conditions, allowing the model 

to learn discriminative features necessary for multiclass 

classification. The images are grayscale CT slices obtained 

from open-source and clinical repositories, and resized to 

a fixed resolution of 224×224 pixels to maintain uniformity 

across training and testing phases. 

Data Pre-processing and Augmentation 

Raw CT images were pre-processed to remove noise, nor- 

malize pixel intensities, and enhance anatomical features. 

MobileNetV2-based normalization was applied to rescale 

in- tensity values and improve contrast while preserving 

clinical structures. In addition, data augmentation 

techniques including random rotation, horizontal and 

vertical flipping, zooming, and shifting were applied to 

increase the effective size of the dataset and prevent model 

overfitting. The dataset was split into training (70%), 

validation (15%), and testing (15%) sets. 

CNN-LSTM Architecture 

The proposed architecture combines the feature learning 

ability of CNNs with the sequence modeling strength of 

LSTMs. The pipeline comprises the following components: 

 

Figure. 2 Sample CT scan images from the dataset 

showing the four classes: Cyst, Normal, Stone, and 

Tumor 
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Convolutional Layers (CNN Backbone): A custom 

CNN was designed using three convolutional 

blocks, each consist- ing of a convolutional layer 

followed by a ReLU activation function, max 

pooling, and batch normalization. These layers 

extract hierarchical spatial features from CT 

images, enabling the network to learn local 

texture, edge patterns, and organ boundaries. 

Flattening and Feature Reshaping: The final 

feature map from the CNN is flattened and 

reshaped into a sequential form compatible with 

the LSTM input format. This reshaping allows the 

model to treat the spatially derived features as 

time- steps in a sequence. 

 

LSTM Layer: A bidirectional LSTM layer is used 

to capture both forward and backward 

dependencies among the features. This helps the 

model understand global context and 

relationships within the feature space, which is 

crucial for distinguishing between visually similar 

kidney pathologies. 

 

Fully Connected Layers: The output from the 

LSTM is passed through two dense layers, where 

the final layer consists of four neurons 

corresponding to the four output classes. A 

softmax activation function is used to output 

probability scores for each class. 
 

Training Details 

The model was trained using the Adam optimizer with a 

learning rate of 0.0001 and categorical cross-entropy as the 

loss function. Training was performed for 10 epochs with 

a batch size of 32, using early stopping and learning rate 

reduction on plateau to avoid overfitting. Model check- 

points were saved based on validation accuracy. The 

model was implemented using TensorFlow and trained on 

a high- performance GPU system. 

Evaluation Metrics 

The performance of the model was evaluated using 

standard classification metrics: accuracy, precision, 

recall, and F1-score. These metrics were computed on 

the test set to provide a  fair estimate   of generalization . 

A confusion matrix was also generated to  analyze per-

class performance. Furthermore, Grad-CAM (Gradient-

weighted Class Activation Mapping) was used for 

interpretability by visualizing  the important regions in 

CT  images influencing the classification decision. 

Model Performance 

The model achieved an overall accuracy of 99.6% on the 

test dataset. The precision, recall, and F1-scores for each 

class are as follows: 

• Cyst: Precision = 0.99, Recall = 1.00, F1-score 

= 1.00 

• Normal: Precision = 1.00, Recall = 1.00, F1-

score = 1.00 

• Stone: Precision = 1.00, Recall = 0.99, F1-score 

= 0.99 

• Tumor: Precision = 1.00, Recall = 0.99, F1-score 

= 0.99 The macro and weighted averages of all 

metrics were approximately 1.00, confirming 

consistent performance across all classes. Grad-

CAM heatmaps showed that the model 

accurately localized relevant regions in the kidney 

for each classification decision, thereby offering 

clinical transparency and reliability. 
 

Summary of Methodology 

To summarize, our proposed CNN-LSTM pipeline 

consists of: 

1) Preprocessing and augmenting CT scan 

images for noise reduction and diversity. 

2) A CNN block to extract rich spatial 

features from the images. 

3) Reshaping the CNN features and passing 

them through an LSTM to capture 

contextual dependencies. 

4) A final softmax layer to classify images into 

four kidney condition categories. 

5) Evaluation using robust metrics and Grad-

CAM-based visualization for 

interpretability. 
 

    6. Result 

This section presents the results obtained from evaluating 

the proposed CNN-LSTM model on the multiclass 

classifica- tion task of kidney diseases from CT images. We 

analyze the model performance using quantitative metrics, 

visual interpre- tation techniques, and a discussion on 

clinical applicability. 

Performance Metrics 
 

The model was evaluated on a test set comprising 3,734 CT 

images divided across four categories: Cyst, Normal, Stone, 

and Tumor. Standard classification metrics such as 

accuracy, precision, recall, and F1-score were computed to 

quantify the model’s effectiveness. The performance report 

is summarized in Table I. 
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The high precision and recall values indicate that the 

model is highly reliable across all categories. Notably, the 

model achieved perfect recall in identifying Cyst and 

Normal images, demonstrating its ability to avoid false 

negatives for these conditions. The slight decline in recall 

for Stone and Tumor classes suggests minimal 

misclassification, likely due to similarities in shape and 

intensity patterns. 

Table.1 Classification Report Of CNN-LSTM Model 

 

Class Precision Recall F1-Score Support 

Cyst 0.99 1.00 1.00 1118 

Normal 1.00 1.00 1.00 1534 

Stone 1.00 0.99 0.99 428 

Tumor 1.00 0.99 0.99 654 

Accuracy 99.6% 

Macro Avg 1.00 0.99 0.99 3734 

Weighted 

Avg 

1.00 1.00 1.00 3734 

 

Precision-Recall and ROC Curve Analysis 
 

To further validate the classification performance, we 

em- ployed precision-recall (PRC) and receiver 

operating charac- teristic (ROC) curve analyses. These 

metrics are especially useful in imbalanced class 

scenarios and help evaluate the model’s capability to 

distinguish between classes. Fig. 3 and Fig. 4 illustrate 

the micro-averaged and macro-averaged PRC and ROC 

curves respectively. 

 

Fig. 3. Precision-Recall Curve (PRC) showing the trade-

off between precision and recall for each class. 

 

The PRC curve shows high precision across all recall 

thresholds, confirming the model’s ability to correctly 

identify positive cases. Similarly, the ROC curve exhibits 

excellent area under the curve (AUC) scores, with values 

close to 1.0, indicating outstanding class separability and 

minimal overlap in the feature space. 

 

 

 

 Fig. 4. Receiver Operating Characteristic (ROC) 

curve with area under the curve (AUC) values 

indicating high separability between classes. 

 

Accuracy and Loss Curves 
 

To monitor the model’s learning behavior, we plotted 

train- ing and validation accuracy across epochs. As shown 

in Fig. 5, both training and validation accuracy increase 

steadily and converge closely, indicating effective 

generalization without overfitting. 

 

Fig. 5. Training and validation accuracy curve over 

epochs. 

 

Separately, the loss curves in Fig. 6 show a consistent 

decrease for both training and validation loss. This reflects 

smooth optimization and stability during training, without 

signs of underfitting or erratic behavior. 

Confusion Matrix Analysis 
 

To gain further insights into the classification behavior, a 

confusion matrix was generated as shown in Fig. 7. The di- 

agonal dominance confirms that the model correctly 

classified most of the test samples. Only a few instances of 

Tumor and Stone images were misclassified, possibly due 

to overlapping radiographic features such as calcifications 

or lesions. 

Visualization with Grad-CAM 
 

To ensure transparency and explainability in model 

decision-making, Grad-CAM (Gradient-weighted Class 

Acti- vation Mapping) was used. As 
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shown in Fig. 8, the heatmaps highlight the regions within 

CT images that significantly influenced the model’s 

predictions. The activation maps show strong attention on 

pathological regions such as cystic cavities, stones, or 

tumors, validating that the network focuses on clinically 

relevant areas. 

 

Fig.6 Training and validation loss curve over epochs. 

 

 

Fig.7 Confusion matrix illustrating per-class classification 

results. 

 

These visualizations are particularly valuable in medical 

AI systems where clinicians need justification for AI-

based decisions. The ability of the model to highlight 

correct anatomical structures enhances trust and 

encourages clinical adoption. 

Comparative Analysis:  To assess the performance of 

our proposed CNN-LSTM architecture, we 

compared it with other baseline models such as 

traditional CNN, ResNet50, and MobileNetV2.  
 

Table.2 Comparative Analysis of Model Accuracy 

 

Model Accuracy 

(%) 

F1-

Score 

Traditional CNN 94.5 0.945 

ResNet50 96.2 0.961 

MobileNetV2 97.4 0.972 

Proposed CNN-

LSTM 

99.6 0.996 

 
 

Fig.8 Grad-CAM visualizations for sample CT images 

across each class. 

 

The results of this comparison are illustrated in Table 

II.The hybrid CNN-LSTM model significantly 

outperformed the baseline models, demonstrating the 

effectiveness of incor- porating temporal dependencies into 

spatial feature representa- tions. While conventional CNNs 

can learn spatial patterns, the LSTM component captures 

latent sequential features, which are particularly useful in 

capturing subtle anatomical variations in medical images. 

Clinical Relevance: Kidney diseases such as stones 

and tumors often exhibit overlapping characteristics 

in imaging. The proposed method’s ability to 

distinguish these conditions with near-perfect accu- 

racy has profound clinical implications. Early and 

accurate detection can lead to timely interventions, 

reduce diagnostic burden on radiologists, and 

improve patient outcomes. Fur- thermore, the 

explainable outputs foster trust in AI-assisted 

diagnostics, supporting clinical decision-making 

rather than replacing it. 

 

Limitations and Future Scope: Despite the promising 

results, the model has limitations. The dataset, 

though balanced and diverse, is not extensive 

enough to capture rare anomalies. Additionally, it is 

trained on 2D axial CT slices; incorporating 3D 

volumetric information may further improve the 

model’s understanding of spatial contexts. In the 

future, we plan to extend this work by integrating 

attention mechanisms and using larger, multi-center 

datasets to ensure generalizability and robustness. 

 

Summary: In summary, the proposed CNN-LSTM 

architecture demon- strates outstanding performance 

in multiclass classification of kidney 
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diseases from CT scans. Through a comprehensive 

evaluation framework, including statistical metrics 

and ex- plainable AI tools, we established the 

model’s efficacy and clinical applicability. The results 

confirm that our hybrid model is a viable tool for 

aiding radiologists in accurate and early diagnosis of 

renal pathologies. 
 

7. Conclusion and Future Scope  

In this study, we proposed a hybrid deep learning 

model combining Convolutional Neural Networks 

(CNN) and Long Short-Term Memory (LSTM) 

networks for the multiclass classification of kidney 

diseases using CT images. The model was trained and 

evaluated on a diverse dataset consisting of four 

classes: Cyst, Normal, Stone, and Tumor. 

Experimental results demonstrated a high 

classification accuracy of 99.6%, outperforming 

several state-of-the-art baseline models. The 

integration of CNN and LSTM allowed the system to 

extract robust spatial and sequential features, 

enabling effective dis- crimination of renal 

pathologies.Furthermore, we employed Grad-CAM-

based visualizations to provide interpretability, 

highlighting the areas of medical images that 

influenced the model’s decision. This step enhances 

trust among clinicians and supports the model’s 

deployment in real-world diagnostic workflows. The 

confusion matrix and classification metrics confirmed 

that the proposed model maintained consistent 

performance across all classes, minimizing both false 

positives and false negatives. 

Despite the outstanding results, certain limitations 

exist. The model was trained on 2D slices, which may 

not capture the full context of 3D anatomical 

structures. Moreover, the dataset, though well-

curated, may not fully represent the variability 

present in a broader clinical population. Future work 

will focus on expanding the dataset to include 3D CT 

volumes, incorpo- rating attention mechanisms for 

better focus on pathological regions, and validating 

the model across multiple healthcare institutions to 

ensure its generalizability and robustness.In 

conclusion, the proposed CNN-LSTM framework 

presents a promising and reliable approach for 

computer-aided diagnosis of kidney diseases, offering 

enhanced accuracy, explainability, and potential for 

real-world clinical integration. 

References  

[1] A. N. Jadhav, T. Sharathamani, M. D. Souza, A. 

Thiyagarajan, M. D. Rokade, R. M. Shelke, 

and S. Swapna, “Ai-powered early detection 

of kidney stones using a hybrid cnn-lstm 

model,” Journal of Neonatal Surgery, vol. 14, no. 

9s, 2025. 

[2] P. Lalitha, M. S. Nasir, M. S. Alam, N. Aparna, 

and R. Rajamohanan, “A novel method for 

classifying and detecting kidney stone using 

mri based on cnn and attention model,” in 2024 

International Conference on Integration of 

Emerging Technologies for the Digital World 

(ICIETDW). IEEE, 2024, pp. 1–7. 

[3] Q. Zhu, P. Cheong-Iao Pang, C. Chen, Q. 

Zheng, C. Zhang, J. Li, and Y. He, 

“Automatic kidney stone identification: an 

adaptive feature- weighted lstm model based 

on urine and blood routine analysis,” 

Urolithiasis, vol. 52, no. 1, p. 145, 2024. 

[4] E. N. Yildiz, E. Cengil, M. Yildirim, and H. 

Bingol, “Diagnosis of chronic kidney disease 

based on cnn and lstm,” Acadlore Transactions 

on AI and Machine Learning, vol. 2, no. 2, pp. 66–

74, 2023. 

[5] G. A. Senthil, R. Prabha, K. Latha, and S. 

Sridevi, “A block chain- enabled novel 

intelligent system analysis for medical image 

processing of kidney stone prediction using 

deep learning techniques and aug- mented 

reality,” in Blockchain-Enabled Solutions for the 

Pharmaceutical Industry, 2025, pp. 335–353. 

[6] M. F. Maniyar, Y. Nagtode, B. Patil, and G. 

Patil, “Kidney disease classification using 

convolutional neural networks (cnn) on ct scan 

images,” Kidney, vol. 4, no. 3, 2024. 

[7] D. Saif, A. M. Sarhan, and N. M. Elshennawy, 

“Early prediction of chronic kidney disease 

based on ensemble of deep learning models 

and optimizers,” Journal of Electrical Systems 

and Information Technology, vol. 11, no. 1, p. 17, 

2024. 

[8] Y. Y. Liu, Z. H. Huang, and K. W. Huang, 

“Deep learning model for computer-aided 

diagnosis of urolithiasis detection from kidney–

ureter-bladder images,” Bioengineering, vol.9, 

no.12, p. 811, 2022.  

[9] K. A. Davamani, D. Dhanya, S. Pushparani, R. 

Vidhya, and G. Mohan, “Advanced deep 

learning model for enhanced kidney disease 

detection,” in 2024 5th International Conference 

on Data Intelligence and Cognitive Informatics 

(ICDICI). IEEE, 2024, pp. 717–723. 

[10] T. E. Ibrahim, M. S. Saraya, A. I. Saleh, and A. 

H. Rabie, “Attended cnn-lstm for prediction 

bladder cancer recurrence and response to 

treatments,” Nile Journal of Communication and 

Computer Science, vol. 9, no. 1, 2025. 

[11] K. Seddiki, F. Precioso, M. Sanabria, M. Salzet, I. 

Fournier, and A. Droit, “Early 

https://doi.org/10.63328/IJCSER-V2I3P1


International Journal of Computational Science and Engineering Sciences                          Bhuvannagari Dillibabu et, al.                                                                          

Vol. 2, Issue 3, 2025, https://doi.org/10.63328/IJCSER-V2I3P1   

Jack Sparrow Publishers © 2025, IJCSER, All Rights Reserved                                                                                                         

www.jacksparrowpublishers.com                                                                                                                     
8 

diagnosis: End-to-end cnn–lstm models for 

mass spectrometry data classification,” 

Analytical Chemistry, vol. 95, no. 36, pp. 13 431-

13 437,2023. 

[12] T. Balachander, K. Shailaja, R. V. Kumar, K. S. 

Krishna, M. Shobana, and N. Nishant, 

“Automatic detection of early gastric cancer in 

endo- scopic images using hga model,” in 

Hybrid and Advanced Technologies. CRC Press, 

2024, pp. 254–259. 

[13] T. Singh, R. K. Sharma, R. Walia, K. Nahar, M. 

Bagga, and P. Gandhi, “Kidney stone detection 

using image segmentation and radial 

transform,” in 2024 2nd International Conference 

on Advances in Computation, Communication and 

Information Technology (ICAICCIT), vol. 1. IEEE, 

2024, pp. 272–276. 

[14] R. Kursun, M. Saritas, and M. Koklu, “Machine 

learning-based kidney disease detection using 

deep features from squeezenet,” 03 2025. 

[15] S. Seoni, F. Molinari, U. R. Acharya, O. S. Lih, P. 

D. Barua, S. Garc´ıa, and M. Salvi, “Application 

of spatial uncertainty predictor in cnn-bilstm 

model using coronary artery disease ecg 

signals,” Information Sciences, vol. 665, p. 

120383, 2024. 
 

Author’s Profile  

Bhuvanagiri Dilli Babu earned his B. 

Tech in Electronics and Communication 

Engineering from Sri venkateswara 

engineering college, Tirupati in 2023 

&Currently pursuing M. Tech from 

VEMU Institute of Technology, Chittoor. 

 

 

 

M. Sreevani earned her B.Tech CSE. 

M.Tech CSE, and currently pursuing 

Ph.D in St.Peters Institute of Higher 

Education and Research, Chennai, India 

and she is interested domains on AI, ML, 

DL. Total 15 years of teaching experience 

and currently working in Vemu Institute 

of technology as Assisstant Professor 

from the last 2 years. 

 

 

 
 

 

https://doi.org/10.63328/IJCSER-V2I3P1

