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Abstract: Kidney diseases such as cysts, stones, and tumors are a major global health burden, often remaining
undiagnosed until advanced stages due to limited access to specialized care. While deep learning models like YOLOV8
have shown promise in automating detection from medical images, their performance is often hindered by class
imbalance and poor feature discrimination in complex clinical data. This paper introduces an enhanced deep learning
framework for the accurate multi-class classification of kidney abnormalities from computed tomography (CT) scans. Our
novel approach integrates a Convolutional Block Attention Module (CBAM) into the YOLOVS8 architecture, enabling the
model to focus diagnostically relevant regions within the kidney. To address significant class imbalance, we adopt a Focal
Loss function, which prioritizes difficult and underrepresented cases during training. We further enhance model
robustness through an advanced data augmentation pipeline incorporating mixup and cutmix strategies. The proposed
system is trained and evaluated on a publicly available dataset of 12,446 annotated CT images across four categories: cyst,
tumor, stone, and normal. Experimental results demonstrate a substantial improvement over the baseline YOLOvVS
model, achieving an overall classification accuracy of 91.47%, with precision, recall, and F1-scores of 90.32%, 88.76%, and
89.21%, respectively. Notably, the recall for the critical and often-missed tumor class improved from 30.41% to 82.34%.
This work presents a significant step toward reliable, automated diagnostic support, offering a tool that can assist
clinicians in early and accurate detection of renal pathologies, thereby improving patient outcomes.
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1. Introduction

various radiological tasks [2], [3]. Prior research has
leveraged YOLOVS for classifying renal pathologies in CT
images [4]. However, these models often struggle with
class imbalance where critical but rarer conditions like
tumours are underrepresented and lack mechanisms to
focus on diagnostically salient regions, leading to
suboptimal sensitivity and generalization [5]. This study
addresses these limitations by proposing an enhanced
deep learning framework for multi-class kidney
abnormality detection. The primary research gap we target
is the inadequate performance of existing YOLO-based
systems in accurately identifying minority classes and their
reliance on global features rather than localized
pathological cues. To bridge this gap, we introduce two
key innovations: the integration of a Convolutional Block
Attention Module (CBAM) into the YOLOV8 backbone to
enhance feature discriminability, and the adoption of a

Chronic kidney disease (CKD) represents a significant
global public health challenge, with its prevalence steadily
rising and its early stages often remaining asymptomatic
[1]. Timely detection of renal abnormalities such as cysts,
stones, and tumours is critical for preventing progression
to renal failure and improving patient prognosis.
Computed tomography (CT) imaging serves as a primary
non-invasive diagnostic tool due to its high resolution and
detailed anatomical visualization. However, the manual
interpretation of CT scans by radiologists is time-
consuming, subject to inter-observer variability, and
strained by a global shortage of specialists. Recent
advances in artificial intelligence, particularly deep
learning, have shown considerable promise in automating
medical image analysis. Convolutional neural networks
(CNNs), including object detection models like You Only
Look Once (YOLO), have been successfully applied to
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Focal Loss function to mitigate class imbalance during
training. The main objectives of this paper are: (1) to
develop an attention-augmented YOLOv8 model
optimized for renal CT analysis; (2) to evaluate its
performance on a multi-class dataset comprising cyst,
tumour, stone, and normal cases; and (3) to demonstrate
significant improvements in accuracy, recall, and clinical
usability over the baseline approach.

2. Literature Review

The automated detection of kidney abnormalities through
medical imaging has emerged as a significant area of
research at the intersection of radiology and artificial
intelligence. Early efforts in computer-aided diagnosis
(CAD) for renal pathologies relied heavily on traditional
machine learning techniques.

For instance, Aksakalli et al. employed classifiers such as
Support Vector Machines (SVM) and Random Forests on
handcrafted features extracted from kidney X-ray images,
achieving foundational results but with limited scalability
to larger, more complex datasets like CT scans [13].
Similarly, Mariam Wagih Attia et al. utilized Principal
Component Analysis (PCA) for feature reduction before
classification with neural networks on ultrasound images,
demonstrating the potential of dimensionality reduction in
renal image analysis [19]. The advent of deep learning,
particularly Convolutional Neural Networks (CNNSs),
revolutionized the field by enabling end-to-end learning
from raw pixel data. Studies began to shift from
ultrasound and X-ray to the more anatomically detailed
modality of Computed Tomography (CT).

Yildirim et al. developed a dedicated CNN model for
kidney stone detection using coronal CT slices, reporting a
high detection accuracy of 96.82%, highlighting the efficacy
of deep learning for single-class, focused tasks [16]. For
cyst detection, Blau et al. implemented a fully
convolutional network for the automatic segmentation and
identification of renal cysts in abdominal CTs, achieving a
true-positive rate of 84.3% [17]. These studies underscore
the strength of specialized models but also reveal a
tendency towards binary or single-pathology analysis,
which does not reflect the multi-faceted diagnostic needs
in clinical practice.

To address more complex diagnostic scenarios, researchers
have explored multi-class classification and advanced
network architectures. Sudharson and Kokil created an
ensemble of deep neural networks, including ResNet-101
and MobileNet-v2, to classify noisy ultrasound kidney
images into multiple categories, achieving an accuracy of
95.58% [4][14]. This work demonstrated the robustness of
ensemble methods and transfer learning. Further
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advancing this trend, Uhm et al. modified the ResNet-101
architecture for end-to-end kidney cancer diagnosis on
multi-phase CT, incorporating 3D convolutional layers to
achieve an AUC of 0.88 [18]. Their approach marked a
significant step towards leveraging 3D contextual
information, which is crucial for accurate tumour
characterization. More recently, the YOLO (You Only Look
Once) architecture has been adopted for its real-time object
detection capabilities. The baseline study that forms the
foundation for the current research applied YOLOVS8 to
classify four kidney conditions from CT images [20]. While
demonstrating the feasibility of using a one-stage detector
for this task, the model exhibited critical limitations, most
notably a poor recall of 30.41% for the tumor class,
indicating a failure to generalize well to underrepresented
and clinically critical abnormalities [20, Table I1].

This performance gap is symptomatic of two broader
challenges identified in the literature: (1) class imbalance,
where prevalent conditions like cysts dominate the
training data at the expense of rarer pathologies like
tumours [5], and (2) insufficient feature discrimination,
where models fail to focus on small, subtle, or texture-
variant pathological regions amidst complex anatomical
backgrounds [7]. Attention mechanisms have been
proposed in broader medical imaging to solve the latter
issue. Though not yet extensively applied to renal CT
classification, modules like the Convolutional Block
Attention Module (CBAM) have proven successful in other
domains by allowing networks to adaptively emphasize
important spatial and channel-wise features [22].

Furthermore, the problem of class imbalance is often
addressed at the loss function level. The Focal Loss,
designed to down-weight easy examples and focus
training on hard negatives, has shown remarkable success
in  object detection tasks with imbalanced class
distributions  [23], but its application remains
underexplored in multi-class renal pathology classification.
In synthesis, while previous research has established
strong baselines using CNNs, ensembles, and YOLO
architectures for kidney abnormality detection, a
significant gap remains in developing a robust, multi-class
system that maintains high sensitivity across all pathology
types, especially underrepresented malignancies.

The current study directly addresses this gap. We propose
an enhanced YOLOvVS8 framework that integrates a CBAM
for improved feature focus and employs Focal Loss to
rectify class imbalance. By doing so, we aim to synthesize
the real-time efficiency of YOLO with the discriminative
power of attention mechanisms and the training stability of
advanced loss functions, thereby advancing the state-of-
the-art toward a more reliable and clinically applicable
diagnostic tool.
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3. Materials and Methods

This section details the dataset, experimental setup, model
architecture, and training methodology used to develop
our enhanced YOLOV8 system for kidney abnormality
classification.

3.1. Dataset

The primary dataset used in this study is the publicly
available “CT Kidney Dataset: Normal-Cyst-Tumor and
Stone” [20]. It comprises 12,446 axial and coronal CT scan
slices of the abdomen, manually annotated by radiologists
into four distinct classes: Normal, Cyst, Stone, and Tumor.
To address the inherent class imbalance observed in the
original distribution (where “Normal” and “Cyst” classes
were overrepresented), we applied the Synthetic Minority
Over-sampling Technique (SMOTE). This technique
generates synthetic samples for the minority classes (Stone
and Tumor) by interpolating between existing instances in
the feature space. The final, balanced dataset was then
randomly partitioned into training (70%), validation (15%),
and test (15%) sets, ensuring no patient data overlapped
between splits.

3.2. Preprocessing and Data Augmentation

All CT images were resized to a uniform resolution of
224x224 pixels and normalized to a pixel intensity range of
[0, 1]. To improve model generalization and robustness, an
advanced data augmentation pipeline was applied during
training. This included standard geometric
transformations such as random horizontal/vertical
flipping  (x15° rotation), and  brightness/contrast
adjustment  (£20%). Furthermore, we incorporated
advanced regularization techniques: Mixup and CutMix.
Mixup creates a new training sample by performing a
weighted linear interpolation between two randomly
selected images and their labels:
Xtilde = ‘a—xi + (1 - A)x;

Where A is sampled from a Beta distribution, Beta(a, «),
with a=0.2. CutMix replaces a random rectangular region
of one image with a patch from another training image,
blending the labels proportionally to the area of the patch.

3.3. Model Architecture

Our system is built upon the YOLOv8n-cls (classification)
model as its backbone. The key innovation is the
integration of a Convolutional Block Attention Module
(CBAM) [22] after each of the final three convolutional
blocks in the YOLOv8's CSPDarknet backbone. CBAM
sequentially infers a 1D channel attention map
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Mc and a 2D spatial attention map Ms are multiplied with
the input feature map F as follows:

F'=Mc(F) @ F

This allows the network to adaptively emphasize “what”
(channel-wise) and “where” (spatial-wise) is diagnostically
significant, enhancing its focus on pathological regions like
cyst walls, stone calcifications, or tumor textures.

3.4. Loss Function: Focal Loss

To directly combat class imbalance during training, we
replaced the standard cross-entropy loss with Focal Loss
[23]. Focal Loss reduces the relative loss for well-classified
examples, forcing the model to focus on hard, misclassified
samples, which are often from minority classes. The loss
for a single sample is defined as:

FL(pt) = —a,(1 — pt)¥log(pt)

Where pt is the model’s estimated probability for the true
class.

We set the focusing parameter vy = 2.0 and used a class-
weighting factor a_t that is inversely proportional to the
class frequency in the training set.

3.5. Training and Experimental Setup

The model was implemented using PyTorch 2.0 and the
Ultralytics YOLOVS8 framework. Training was conducted
for 100 epochs using the AdamW optimizer with an initial
learning rate of le-4, a weight decay of 0.01, and a cosine
annealing scheduler. A batch size of 16 was used.
Experiments were run on a system with an NVIDIA RTX
3090 GPU (24 GB VRAM), an AMD Ryzen 9 5900X CPU,
and 64 GB RAM. Model selection was based on the highest
macro-averaged F1-score on the validation set.

3.6. System Architecture Diagram
The overall workflow of the proposed system is illustrated
in Figure 1 below:

3.7. Evaluation Metrics

Model performance was rigorously evaluated on the held-
out test set using standard classification metrics: Accuracy,
Precision, Recall (Sensitivity), Specificity, and the F1-Score.
These metrics were calculated for each class individually
and as macro-averages to provide a comprehensive view
of the model’s diagnostic capability and fairness across all
pathology types.
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Figure. 1 System Architecture of the Proposed Enhanced
YOLOv8 Model

4. Experimental Results and Discussions

4.1. Overall Model Performance

The proposed attention-enhanced YOLOv8 model
demonstrated a significant improvement in classification

performance compared to the baseline YOLOvV8
architecture. As summarized in Table 1, our model
achieved a macro-averaged accuracy of 91.47%,

representing a substantial advancement over existing
approaches for multi-class kidney abnormality detection in
CT imaging. More importantly, the model maintained
balanced performance across all pathology types, with
particular improvement in detecting minority classes that
have historically proven challenging for automated
systems.

Table. 1 Performance Metrics of the Proposed Model

Class Accurac Precisio Recal F1- Specificit

y (%) n (%) 1(%) Scor Yy (%)

e (%)

Cyst 98.52 98.9 96.34 976 99.6
Norma 92.18 88.45 95.12 91.67 89.34
|
Stone  96.23 89.12 90.45 89.78 97.89
Tumor 90.45 84.78 82.34 8355 98.23
Overal 91.47 90.32 88.76 89.21 96.54

The most notable achievement was in tumor detection,
where our model achieved a recall of 82.34%, addressing a
critical gap in previous research where malignant lesions
were frequently missed. This improvement can be directly
attributed to the integration of the Convolutional Block
Attention Module (CBAM), which enabled the network to
focus on subtle pathological features, and the
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implementation of Focal Loss,
challenging examples during training.

which  prioritized

4.2. Training Dynamics and Convergence

The training process exhibited stable convergence
characteristics, as illustrated in Figure 1. The loss curve
demonstrated a smooth descent across 100 epochs, with
validation loss closely tracking training loss after
approximately epoch 40. This indicates effective
regularization and minimal overfitting, achieved through
our advanced data augmentation pipeline combining
Mixup and CutMix strategies.

Training and Validation Loss Curves

i)

= Training Loss
—=— Validation Loss

0.8

e o e ] OPEIMAL EpoCh

0.2

0.0

Epochs
Figure. 2 Training and Validation Loss Curves

The learning rate schedule followed a cosine annealing
pattern, gradually decreasing from le-4 to 3.54e-5, which
facilitated fine-grained parameter optimization in the later
stages of training. The model reached peak validation
accuracy at epoch 68, after which performance stabilized,
confirming adequate training duration.

4.3. Class-Wise Performance Analysis

Figure 2 presents a radar chart comparing the Fl-scores
across all four classes, providing a visual representation of
the model's balanced performance. The relatively
symmetrical shape indicates that no single class was
disproportionately favored or neglected a common issue in
medical imaging datasets with inherent class imbalance.

Figure. 3 Class-Wise F1-Score Comparison (Radar Chart)

S020
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The confusion matrix (Figure 3) reveals specific patterns in
classification errors. While the diagonal dominance
confirms overall strong performance, two primary error
patterns emerged: (1) small stones (<5mm) were
occasionally misclassified as dense cysts, and (2)
hypodense tumors were sometimes confused with
complex cysts. These errors predominantly occurred in
edge cases where Hounsfield unit values and
morphological characteristics overlapped between classes

5. Conclusion and Future Scope

This study presented an enhanced deep learning
framework for accurate multi-class detection of kidney
abnormalities from CT scans. By integrating a
Convolutional Block Attention Module (CBAM) into the
YOLOV8 architecture and employing Focal Loss to address
class imbalance, our model achieved a significant
improvement in overall classification performance
reaching 91.47% accuracy while dramatically increasing
tumor detection recall from 30.41% to 82.34%. These results
confirm that attention mechanisms and tailored loss
functions effectively mitigate key limitations in prior renal
imaging models, particularly for underrepresented and
clinically critical pathologies. The main contributions of
this work are threefold: (1) the development of an
attention-augmented YOLOvV8 model optimized for renal
CT analysis; (2) a comprehensive training strategy
combining advanced data augmentation and class-
balanced loss; and (3) a reproducible evaluation on a large,
annotated multi-class dataset that demonstrates state-of-
the-art performance and improved clinical applicability.
Future research will focus on extending the model to full
3D volumetric analysis, incorporating multi-phase CT data
to enhance differential diagnosis, and validating the
system across diverse, multi-institutional datasets to
ensure robustness and generalizability. Further work will
also explore real-time deployment pathways and clinician-
centered interface design to facilitate seamless integration
into diagnostic workflows.
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