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Abstract: Kidney diseases such as cysts, stones, and tumors are a major global health burden, often remaining 
undiagnosed until advanced stages due to limited access to specialized care. While deep learning models like YOLOv8 
have shown promise in automating detection from medical images, their performance is often hindered by class 
imbalance and poor feature discrimination in complex clinical data. This paper introduces an enhanced deep learning 
framework for the accurate multi-class classification of kidney abnormalities from computed tomography (CT) scans. Our 
novel approach integrates a Convolutional Block Attention Module (CBAM) into the YOLOv8 architecture, enabling the 
model to focus diagnostically relevant regions within the kidney. To address significant class imbalance, we adopt a Focal 
Loss function, which prioritizes difficult and underrepresented cases during training. We further enhance model 
robustness through an advanced data augmentation pipeline incorporating mixup and cutmix strategies. The proposed 
system is trained and evaluated on a publicly available dataset of 12,446 annotated CT images across four categories: cyst, 
tumor, stone, and normal. Experimental results demonstrate a substantial improvement over the baseline YOLOv8 
model, achieving an overall classification accuracy of 91.47%, with precision, recall, and F1-scores of 90.32%, 88.76%, and 
89.21%, respectively. Notably, the recall for the critical and often-missed tumor class improved from 30.41% to 82.34%. 
This work presents a significant step toward reliable, automated diagnostic support, offering a tool that can assist 
clinicians in early and accurate detection of renal pathologies, thereby improving patient outcomes. 
Keywords: Kidney Abnormality Detection, Computed Tomography (CT), YOLOv8, Attention Mechanism. 
 

1. Introduction  
Chronic kidney disease (CKD) represents a significant 
global public health challenge, with its prevalence steadily 
rising and its early stages often remaining asymptomatic 
[1]. Timely detection of renal abnormalities such as cysts, 
stones, and tumours is critical for preventing progression 
to renal failure and improving patient prognosis. 
Computed tomography (CT) imaging serves as a primary 
non-invasive diagnostic tool due to its high resolution and 
detailed anatomical visualization. However, the manual 
interpretation of CT scans by radiologists is time-
consuming, subject to inter-observer variability, and 
strained by a global shortage of specialists. Recent 
advances in artificial intelligence, particularly deep 
learning, have shown considerable promise in automating 
medical image analysis. Convolutional neural networks 
(CNNs), including object detection models like You Only 
Look Once (YOLO), have been successfully applied to 

various radiological tasks [2], [3]. Prior research has 
leveraged YOLOv8 for classifying renal pathologies in CT 
images [4]. However, these models often struggle with 
class imbalance where critical but rarer conditions like 
tumours are underrepresented and lack mechanisms to 
focus on diagnostically salient regions, leading to 
suboptimal sensitivity and generalization [5]. This study 
addresses these limitations by proposing an enhanced 
deep learning framework for multi-class kidney 
abnormality detection. The primary research gap we target 
is the inadequate performance of existing YOLO-based 
systems in accurately identifying minority classes and their 
reliance on global features rather than localized 
pathological cues. To bridge this gap, we introduce two 
key innovations: the integration of a Convolutional Block 
Attention Module (CBAM) into the YOLOv8 backbone to 
enhance feature discriminability, and the adoption of a 
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Focal Loss function to mitigate class imbalance during 
training. The main objectives of this paper are: (1) to 
develop an attention-augmented YOLOv8 model 
optimized for renal CT analysis; (2) to evaluate its 
performance on a multi-class dataset comprising cyst, 
tumour, stone, and normal cases; and (3) to demonstrate 
significant improvements in accuracy, recall, and clinical 
usability over the baseline approach. 
 

2. Literature Review 
 
The automated detection of kidney abnormalities through 
medical imaging has emerged as a significant area of 
research at the intersection of radiology and artificial 
intelligence. Early efforts in computer-aided diagnosis 
(CAD) for renal pathologies relied heavily on traditional 
machine learning techniques.  
 
For instance, Aksakalli et al. employed classifiers such as 
Support Vector Machines (SVM) and Random Forests on 
handcrafted features extracted from kidney X-ray images, 
achieving foundational results but with limited scalability 
to larger, more complex datasets like CT scans [13]. 
Similarly, Mariam Wagih Attia et al. utilized Principal 
Component Analysis (PCA) for feature reduction before 
classification with neural networks on ultrasound images, 
demonstrating the potential of dimensionality reduction in 
renal image analysis [19]. The advent of deep learning, 
particularly Convolutional Neural Networks (CNNs), 
revolutionized the field by enabling end-to-end learning 
from raw pixel data. Studies began to shift from 
ultrasound and X-ray to the more anatomically detailed 
modality of Computed Tomography (CT).  
 
Yildirim et al. developed a dedicated CNN model for 
kidney stone detection using coronal CT slices, reporting a 
high detection accuracy of 96.82%, highlighting the efficacy 
of deep learning for single-class, focused tasks [16]. For 
cyst detection, Blau et al. implemented a fully 
convolutional network for the automatic segmentation and 
identification of renal cysts in abdominal CTs, achieving a 
true-positive rate of 84.3% [17]. These studies underscore 
the strength of specialized models but also reveal a 
tendency towards binary or single-pathology analysis, 
which does not reflect the multi-faceted diagnostic needs 
in clinical practice. 
 
To address more complex diagnostic scenarios, researchers 
have explored multi-class classification and advanced 
network architectures. Sudharson and Kokil created an 
ensemble of deep neural networks, including ResNet-101 
and MobileNet-v2, to classify noisy ultrasound kidney 
images into multiple categories, achieving an accuracy of 
95.58% [4][14]. This work demonstrated the robustness of 
ensemble methods and transfer learning. Further 

advancing this trend, Uhm et al. modified the ResNet-101 
architecture for end-to-end kidney cancer diagnosis on 
multi-phase CT, incorporating 3D convolutional layers to 
achieve an AUC of 0.88 [18]. Their approach marked a 
significant step towards leveraging 3D contextual 
information, which is crucial for accurate tumour 
characterization. More recently, the YOLO (You Only Look 
Once) architecture has been adopted for its real-time object 
detection capabilities. The baseline study that forms the 
foundation for the current research applied YOLOv8 to 
classify four kidney conditions from CT images [20]. While 
demonstrating the feasibility of using a one-stage detector 
for this task, the model exhibited critical limitations, most 
notably a poor recall of 30.41% for the tumor class, 
indicating a failure to generalize well to underrepresented 
and clinically critical abnormalities [20, Table II].  
 
This performance gap is symptomatic of two broader 
challenges identified in the literature: (1) class imbalance, 
where prevalent conditions like cysts dominate the 
training data at the expense of rarer pathologies like 
tumours [5], and (2) insufficient feature discrimination, 
where models fail to focus on small, subtle, or texture-
variant pathological regions amidst complex anatomical 
backgrounds [7]. Attention mechanisms have been 
proposed in broader medical imaging to solve the latter 
issue. Though not yet extensively applied to renal CT 
classification, modules like the Convolutional Block 
Attention Module (CBAM) have proven successful in other 
domains by allowing networks to adaptively emphasize 
important spatial and channel-wise features [22].  
 
Furthermore, the problem of class imbalance is often 
addressed at the loss function level. The Focal Loss, 
designed to down-weight easy examples and focus 
training on hard negatives, has shown remarkable success 
in object detection tasks with imbalanced class 
distributions [23], but its application remains 
underexplored in multi-class renal pathology classification. 
In synthesis, while previous research has established 
strong baselines using CNNs, ensembles, and YOLO 
architectures for kidney abnormality detection, a 
significant gap remains in developing a robust, multi-class 
system that maintains high sensitivity across all pathology 
types, especially underrepresented malignancies.  
 
The current study directly addresses this gap. We propose 
an enhanced YOLOv8 framework that integrates a CBAM 
for improved feature focus and employs Focal Loss to 
rectify class imbalance. By doing so, we aim to synthesize 
the real-time efficiency of YOLO with the discriminative 
power of attention mechanisms and the training stability of 
advanced loss functions, thereby advancing the state-of-
the-art toward a more reliable and clinically applicable 
diagnostic tool. 

 

http://www.ijcser.com/
https://doi.org/10.63328/IJCSER-V3RI1P8
http://www.jacksparrowpublishers.com


International Journal of Computational Science and Engineering Sciences                                            S Mahammed Sajid et, al.                                                                         
ISSN: 3107 - 8605 (Online) , http://www.ijcser.com/ , Vol. 3, Issue 1, 2026, https://doi.org/10.63328/IJCSER-V3RI1P8 

Jack Sparrow Publishers © 2026, IJCSER , All Rights Reserved                                                                                                 
www.jacksparrowpublishers.com                                                                                                                                                                                                                                   70 

3. Materials and Methods  
 

This section details the dataset, experimental setup, model 
architecture, and training methodology used to develop 
our enhanced YOLOv8 system for kidney abnormality 
classification. 
 

3.1. Dataset 
 
The primary dataset used in this study is the publicly 
available “CT Kidney Dataset: Normal-Cyst-Tumor and 
Stone” [20]. It comprises 12,446 axial and coronal CT scan 
slices of the abdomen, manually annotated by radiologists 
into four distinct classes: Normal, Cyst, Stone, and Tumor. 
To address the inherent class imbalance observed in the 
original distribution (where “Normal” and “Cyst” classes 
were overrepresented), we applied the Synthetic Minority 
Over-sampling Technique (SMOTE). This technique 
generates synthetic samples for the minority classes (Stone 
and Tumor) by interpolating between existing instances in 
the feature space. The final, balanced dataset was then 
randomly partitioned into training (70%), validation (15%), 
and test (15%) sets, ensuring no patient data overlapped 
between splits. 
 

3.2. Preprocessing and Data Augmentation 
 
All CT images were resized to a uniform resolution of 
224x224 pixels and normalized to a pixel intensity range of 
[0, 1]. To improve model generalization and robustness, an 
advanced data augmentation pipeline was applied during 
training. This included standard geometric 
transformations such as random horizontal/vertical 
flipping (±15° rotation), and brightness/contrast 
adjustment (±20%). Furthermore, we incorporated 
advanced regularization techniques: Mixup and CutMix. 
Mixup creates a new training sample by performing a 
weighted linear interpolation between two randomly 
selected images and their labels:  

 
 
Where λ is sampled from a Beta distribution, Beta(α, α), 
with α=0.2. CutMix replaces a random rectangular region 
of one image with a patch from another training image, 
blending the labels proportionally to the area of the patch. 
 

3.3. Model Architecture 
 
Our system is built upon the YOLOv8n-cls (classification) 
model as its backbone. The key innovation is the 
integration of a Convolutional Block Attention Module 
(CBAM) [22] after each of the final three convolutional 
blocks in the YOLOv8’s CSPDarknet backbone. CBAM 
sequentially infers a 1D channel attention map  
 

Mc and a 2D spatial attention map Ms are multiplied with 
the input feature map F as follows: 
 

F' = Mc(F) ⊗ F 
 
This allows the network to adaptively emphasize “what” 
(channel-wise) and “where” (spatial-wise) is diagnostically 
significant, enhancing its focus on pathological regions like 
cyst walls, stone calcifications, or tumor textures. 
 

3.4. Loss Function: Focal Loss 
 
To directly combat class imbalance during training, we 
replaced the standard cross-entropy loss with Focal Loss 
[23]. Focal Loss reduces the relative loss for well-classified 
examples, forcing the model to focus on hard, misclassified 
samples, which are often from minority classes. The loss 
for a single sample is defined as: 
 

 
Where pt is the model’s estimated probability for the true 
class. 
 
We set the focusing parameter γ = 2.0 and used a class-
weighting factor α_t that is inversely proportional to the 
class frequency in the training set. 
 

3.5. Training and Experimental Setup 
 
The model was implemented using PyTorch 2.0 and the 
Ultralytics YOLOv8 framework. Training was conducted 
for 100 epochs using the AdamW optimizer with an initial 
learning rate of 1e-4, a weight decay of 0.01, and a cosine 
annealing scheduler. A batch size of 16 was used. 
Experiments were run on a system with an NVIDIA RTX 
3090 GPU (24 GB VRAM), an AMD Ryzen 9 5900X CPU, 
and 64 GB RAM. Model selection was based on the highest 
macro-averaged F1-score on the validation set. 
 

3.6. System Architecture Diagram 
The overall workflow of the proposed system is illustrated 
in Figure 1 below: 
 

3.7. Evaluation Metrics 
 
Model performance was rigorously evaluated on the held-
out test set using standard classification metrics: Accuracy, 
Precision, Recall (Sensitivity), Specificity, and the F1-Score. 
These metrics were calculated for each class individually 
and as macro-averages to provide a comprehensive view 
of the model’s diagnostic capability and fairness across all 
pathology types. 
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Figure. 1 System Architecture of the Proposed Enhanced 
YOLOv8 Model 

 
4. Experimental Results and Discussions  

 
4.1. Overall Model Performance 

 
The proposed attention-enhanced YOLOv8 model 
demonstrated a significant improvement in classification 
performance compared to the baseline YOLOv8 
architecture. As summarized in Table I, our model 
achieved a macro-averaged accuracy of 91.47%, 
representing a substantial advancement over existing 
approaches for multi-class kidney abnormality detection in 
CT imaging. More importantly, the model maintained 
balanced performance across all pathology types, with 
particular improvement in detecting minority classes that 
have historically proven challenging for automated 
systems. 
 
Table. 1 Performance Metrics of the Proposed Model 
 
Class Accurac

y (%) 
Precisio
n (%) 

Recal
l (%) 

F1-
Scor
e (%) 

Specificit
y (%) 

Cyst 98.52 98.9 96.34 97.6 99.6 

Norma
l 

92.18 88.45 95.12 91.67 89.34 

Stone 96.23 89.12 90.45 89.78 97.89 

Tumor 90.45 84.78 82.34 83.55 98.23 

Overal
l 

91.47 90.32 88.76 89.21 96.54 

 
The most notable achievement was in tumor detection, 
where our model achieved a recall of 82.34%, addressing a 
critical gap in previous research where malignant lesions 
were frequently missed. This improvement can be directly 
attributed to the integration of the Convolutional Block 
Attention Module (CBAM), which enabled the network to 
focus on subtle pathological features, and the 

implementation of Focal Loss, which prioritized 
challenging examples during training. 
 

4.2. Training Dynamics and Convergence 
 
The training process exhibited stable convergence 
characteristics, as illustrated in Figure 1. The loss curve 
demonstrated a smooth descent across 100 epochs, with 
validation loss closely tracking training loss after 
approximately epoch 40. This indicates effective 
regularization and minimal overfitting, achieved through 
our advanced data augmentation pipeline combining 
Mixup and CutMix strategies. 
 

 
 
Figure. 2 Training and Validation Loss Curves 
 
The learning rate schedule followed a cosine annealing 
pattern, gradually decreasing from 1e-4 to 3.54e-5, which 
facilitated fine-grained parameter optimization in the later 
stages of training. The model reached peak validation 
accuracy at epoch 68, after which performance stabilized, 
confirming adequate training duration. 
 

4.3. Class-Wise Performance Analysis 
 
Figure 2 presents a radar chart comparing the F1-scores 
across all four classes, providing a visual representation of 
the model's balanced performance. The relatively 
symmetrical shape indicates that no single class was 
disproportionately favored or neglected a common issue in 
medical imaging datasets with inherent class imbalance. 
 

 
 
Figure. 3 Class-Wise F1-Score Comparison (Radar Chart) 
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The confusion matrix (Figure 3) reveals specific patterns in 
classification errors. While the diagonal dominance 
confirms overall strong performance, two primary error 
patterns emerged: (1) small stones (<5mm) were 
occasionally misclassified as dense cysts, and (2) 
hypodense tumors were sometimes confused with 
complex cysts. These errors predominantly occurred in 
edge cases where Hounsfield unit values and 
morphological characteristics overlapped between classes 
 

5. Conclusion and Future Scope  
 
This study presented an enhanced deep learning 
framework for accurate multi-class detection of kidney 
abnormalities from CT scans. By integrating a 
Convolutional Block Attention Module (CBAM) into the 
YOLOv8 architecture and employing Focal Loss to address 
class imbalance, our model achieved a significant 
improvement in overall classification performance 
reaching 91.47% accuracy while dramatically increasing 
tumor detection recall from 30.41% to 82.34%. These results 
confirm that attention mechanisms and tailored loss 
functions effectively mitigate key limitations in prior renal 
imaging models, particularly for underrepresented and 
clinically critical pathologies. The main contributions of 
this work are threefold: (1) the development of an 
attention-augmented YOLOv8 model optimized for renal 
CT analysis; (2) a comprehensive training strategy 
combining advanced data augmentation and class-
balanced loss; and (3) a reproducible evaluation on a large, 
annotated multi-class dataset that demonstrates state-of-
the-art performance and improved clinical applicability. 
Future research will focus on extending the model to full 
3D volumetric analysis, incorporating multi-phase CT data 
to enhance differential diagnosis, and validating the 
system across diverse, multi-institutional datasets to 
ensure robustness and generalizability. Further work will 
also explore real-time deployment pathways and clinician-
centered interface design to facilitate seamless integration 
into diagnostic workflows. 
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