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Abstract: Contrastive vision-language models (VLMs) like CLIP have shown that they can do well on zero-shot
classification tasks, but their accuracy relies a lot on how effectively the prompts are built. To solve this problem, we use
GPT-4 to make prompts that are more visually descriptive, which makes CLIP more flexible when working with fine-
grained picture collections. We put up a whole pipeline on the CUB-200 bird species dataset, starting with preprocessing
the images (resizing, converting to greyscale, and bilateral filtering) and then utilizing statistical measures and the Gray-
Level Co-occurrence Matrix (GLCM) to extract features. The dataset is divided into training and testing sets, and VGG-19
is used for transfer learning to classify the data. This gives a solid visual baseline. To make the text space more
interesting, GPT-4 is used to provide extensive visual explanations for each class label. These descriptions are then added
to CLIP’s text embedding space. These embeddings match the outputs of CLIP’s visual encoder, which makes it easier to
interpret things from different modes. Using criteria like accuracy, F1-score, precision, recall, and mistake rate to test the
suggested technique shows that it works better than typical CLIP prompts for categorization. Finally, a web site is built
using Python, Streamlit, HTML, and CSS that lets users input pictures and get predictions with full details. This study
shows how feature-based preprocessing, deep transfer learning, and GPT-4-enhanced prompt engineering may work
together to greatly improve zero-shot classification accuracy in fine-grained image recognition tasks.
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1. Introduction

digital pictures [4]. Image classification systems have
progressed from simple statistical models that just
consider pixels to complex deep neural networks that can
learn abstract semantic ideas thanks to developments in
machine learning, digital imaging, and Al throughout the
last 40 years [5].

Airtificial Intelligence (Al) has evolved rapidly over the
past decade, significantly transforming the domains of
image understanding, computer vision, and natural
language pro- cessing [1]. Traditional computer vision
systems were highly dependent on handcrafted features
and rule-based algorithms, which limited their scalability
and adaptability to new environments [2]. With the
emergence of deep learning and large- scale datasets, Al
systems began to learn hierarchical feature representations
directly from data, improving both efficiency and
accuracy. Convolutional Neural Networks (CNNSs) such as
AlexNet, VGG, and ResNet demonstrated exceptional
capability in extracting discriminative visual features from
images, paving the way for robust image classification and
object detection tasks [3]. Image classification is one of the
most fundamental jobs in computer vision. It involves the
automatic recognition and categorisation of objects inside
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Deep learning, especially Convolutional Neural Networks
(CNNs), has changed the discipline by making it possible
to learn complicated visual patterns from start to finish [6].
Conventional image classification algorithms depended on
manually designed features like SIFT, HOG, GLCM, and
LBP, necessitating domain knowledge and sometimes
lacking generalisability across varied datasets [7]. CNN
architectures like AlexNet, VGG, ResNet, and EfficientNet
enable the automated learning and abstraction of
hierarchical visual features, resulting in substantial
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advancements in fine-grained classification, object
recognition, and semantic segmentation applications [8].

In recent years, a new paradigm has altered vision systems
: multimodal models that include both visual and textual
comprehension. Among them, OpenAl’s CLIP (Contrastive
Language-picture Pretraining) has emerged as a
breakthrough, allowing picture categorisation using
natural language cues [9]. Instead than depending
exclusively on a trained classifier head, CLIP produces
similarity scores across picture and word embeddings,
providing remarkable generalisation  possibilities.
Nonetheless, whereas CLIP excels in broad classification
tasks, it has challenges in fine-grained visual
categorisation, where classes exhibit visual similarities and
need highly dis- criminative inputs. This is particularly
applicable to datasets like CUB-200, where several avian
species are distinguished only by nuanced characteristics
such as plumage colouration, beak morphology, or wing
markings. This study employs the generative capabilities
of GPT-4 to create intricate, class specific visual
descriptions in order to address this difficulty.

The descriptions are then integrated via CLIP’s text
encoder, creating more nuanced prompts that enhance
classification precision. This hybrid approach connects
vision and language, resulting in a more semantically
anchored categorisation pro- cess. Fine-Grained Visual
Categorisation pertains to the categorisation of
subcategories within a fundamental category, such as
avian varieties, floral species, automotive models, or
canine breeds [10]. In the CUB-200 dataset, several groups
vary by just subtle visual distinctions. The distinctions are
often too nuanced for conventional CNN-based models
without domain- specific attention processes. Although
transfer learning models like VGG-19 and ResNet
significantly enhance performance, they often encounter
difficulties when classes exhibit overlap- ping texture and
shape characteristics [11].This necessitates the acquisition
of more profound semantic knowledge, allow- ing models
to use textual indicators that articulate the visual attributes
of each class, beyond simple pixel-level distinctions. GPT-4
facilitates the automated creation of descriptions that serve
as prompts for CLIP, so augmenting its capacity to
differentiate between visually similar categories [12].

Vision-language models (VLMs) exemplify a
contemporary Al framework in which pictures and text are
analysed within a unified embedding space [13]. OpenAl’s
CLIP is one of the most important designs in this group.
CLIP learns to match images and text by using a
contrastive learning goal on 400 million image-text pairs
[14]. CLIP does away with the requirement for standard
classifier heads by utilising natural language descriptions
to identify classes. Therefore, CLIP’s performance may be
greatly improved by creating very detailed prompts that
focus on visual signals that are distinct to each class. This is
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exactly what GPT-4 does in this study. For fine-grained
classification tasks like recognising differ- ent types of
birds, models need to be able to pick up on little visual
variations [15]. Existing deep learning models lack the
semantic depth needed for such tasks, while CLIP’s
performance is hindered by generic, shallow text prompts.
There is a need for a hybrid system that enhances prompt
quality, aligns semantic and visual embeddings, improves
fine-grained classification performance and reduces
misclassification among visually similar categories.

The key contributions to enhance fine-grained image
classification accuracy by integrating GPT-4 generated
visual descriptions as prompts for CLIP is as follows:

= To preprocess and enhance image quality using
resizing, grayscale conversion, and bilateral filtering
and extract relevant statistical features using MSD and
GLCM.

= To apply VGG-19 as a baseline classifier and generate
class-specific descriptive prompts using GPT-4.

= To encode prompts in CLIP’s text embedding space
and compare CLIP, VGG, and Hybrid (GPT+CLIP)
performance in terms of accuracy, precision, recall, F1-
score, and error rate by evaluating the models.

= To deploy the system as a functional web application.

This remaining paper is coordinated as follows. The
second section represents the Literature review. The third
Section representing the proposed methodology. The
fourth section accomplishes the results and the fifth section
presents the conclusion.

2. Existing Methods

The literature survey forms the foundation of any re-
search work, providing insights into the prior studies,
existing methodologies, and current challenges in the
relevant domain. In this project, the primary focus is on
fine-grained image classification using vision-language
models (VLMs), transfer learning, and prompt engineering
with large language models (LLMSs) such as GPT.

In 2021, Chao lJia et al. [16], introduced the Contrastive
Language Image Pretraining (CLIP) model — a ground-
breaking approach that unified image and text
understanding through joint embedding spaces. The study
demonstrated how models trained on massive image-text
pairs gathered from the web could learn semantic
associations between visual and textual modalities without
the need for explicit labelling. The researchers employed a
contrastive learning objective, where matching image—text
pairs were pulled closer in the embed- ding space, while
mismatched pairs were pushed apart. This training
paradigm enabled CLIP to achieve impressive zero- shot
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learning capabilities, effectively recognizing new classes by
comparing image features with textual prompts such as “a
photo of a cat” or “a picture of a sunflower.” However, the
model’s reliance on noisy web data like the collected
dataset contained labelling inconsistencies and semantic
ambiguities and the large-scale pretraining required high
computational resources, making it infeasible for smaller
research environments. Also CLIP’s performance degraded
in  fine-grained classification tasks, where subtle
differences (e.g., between similar bird species) could not be
captured by simple text prompts.

In 2022, Maniparambil et al., [17] proposed the Base-
Transformers framework for one-shot learning. The study
aimed to address the problem of data scarcity in computer
vision, particularly in fine-grained or specialized domains
where annotated samples are limited. he Base
Transformers architecture introduced a mechanism to
focus attention on base data points, enabling the model to
learn generalizable features from very few examples. The
system could figure out how fresh and old samples were
related by using Transformer- based attention layers on a
basic dataset. This meant that it could classify samples
with little help. But Base Transformers ran into certain
problems, such as When the model was used on big or
complicated datasets like ImageNet or CUB- 200, it had
trouble staying accurate. The quantity of base samples and
hyperparameter adjustment also made training stability
dependent. It also couldn’t adjust to different modes, as
the model solely looked at visual input and didn’t use text
descriptions or outside semantic information.

In 2023, Sachit Menon and Carl Vondrick [18] investigated
the concept of visual categorisation by descriptive text in
2023, utilising large language models (LLMSs) to improve
the semantic comprehension of picture material. Their
study showed that

LLMs might serve as semantic links between visual inputs
and text representations, creating detailed natural
language descriptions that help image classification
algorithms. This research used descriptive words instead
of static text labels. For example, instead of using the label
“sparrow,” it used the prompt ”a small brown bird with
streaked feathers and a white belly.” These specific hints
let the machine pick up on little details that most picture
categorisation networks miss. Even while the method
greatly increased the accuracy of zero-shot identification,
there were still certain problems, such as The quality of the
produced descriptions depended on how well the LLM
understood the context, and the performance was not the
same across all classes.

In 2023, Andreas Ko'pft et al., [19] introduced Open
Assistant, an open-source initiative designed to
democratize large language model alignment. The project
aimed to create a community-driven conversational Al
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system that could align with human intentions using
reinforcement learning from human feedback (RLHF).The
researchers emphasized transparency, accessibility, and
ethical Al alignment, building a system that could be
improved collaboratively by volunteers worldwide. Open
Assistant provided a flexible platform for integrating
domain-specific knowledge into language models, making
it a valuable resource for multimodal applications.
However, several limitations were observed like the
model’s quality heavily depended on the diversity and
reliability of volunteer provided feedback and It lacked
strong domain specialization, particularly for scientific or
technical datasets. Also Its integration with vision—
language models remained largely unexplored.

2.1. Contrastive Vision-language pretraining (CLIP)

The CLIP family of models introduced the idea of learning
a shared embedding space for images and natural
language using a contrastive objective trained on large-
scale image-text pairs. CLIP simultaneously trains an
image encoder and a text encoder so that matching image—
text pairs have high cosine similarity while mismatched
pairs have low similarity. This enables zero-shot and few-
shot transfer to downstream classification tasks by
supplying class names or textual prompts instead of
retraining a full classifier head. CLIP’s main strength is its
flexibility: it generalizes to many recognition tasks without
per-task supervised finetuning. However, out-of- the-box
CLIP depends heavily on the textual prompts used as class
descriptors; terse or generic prompts often vyield
suboptimal performance for fine-grained categories. For
fine-grained datasets (e.g., bird species), CLIP benefits
substantially from more descriptive, discriminative text
that highlights subtle visual cues a key motivation for
using GPT-4 to generate rich prompts.

2.2. Large Language Models For Visual Description
(GPT- Family

Large language models (LLMs) such as the GPT family are
capable of producing coherent, context-rich natural
language descriptions from concise instructions. Their
generative ability allows the automatic creation of multiple
diverse textual descriptions for a single concept or class,
encoding fine semantic distinctions that humans may
overlook or express inconsistently. Generative LLMs can
therefore act as automated prompt engineers: given class
metadata or a few exemplar images, they can output richly
detailed visual descriptions. While LLM-generated
descriptions introduce semantic rich- ness, they may also
contain hallucinations or irrelevant details if prompts to
the LLM are not carefully constructed. Con- trolled prompt
templates and iterative verification (or human- in-the-loop
checking) mitigate such issues. In the present work, GPT-4
is leveraged to systematically produce per-class visual

descriptors that emphasize
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discriminative attributes (beak shape, plumage pattern,
coloration), which are expected to improve CLIP’s
discrimination on fine-grained bird classes.

2.3. Prompt Engineering & LLMS For Vision Tasks

Recent research has shown that the quality and variety of
text prompts directly affect vision-language system
performance. Studies exploring prompt ensembling,
prompt tuning, and automated prompt generation
demonstrate that multiple carefully crafted textual
descriptions per class improve robust- ness and reduce
prompt bias. Methods range from human- curated prompt
banks to automated schemes that generate prompt variants
via paraphrasing or LLMs. These works underscore two
practical lessons: (1) diversity of textual descriptions helps
capture varied visual appearances and viewpoints, and (2)
systematic prompt generation can scale to large
taxonomies where manual prompt authoring would be
infeasible. For a fine-grained dataset like CUB-200,
automated generation of multiple discriminative prompts
per species addresses the variability in appearance across
images and provides richer text embeddings for CLIP
alignment.

2.4. Fine-Grained Visual
CUB-200 Benchmark

Categorization and the

Fine-grained visual categorization (FGVC) focuses on
distinguishing subordinate classes within a common
category (e.g., bird species). The CUB-200 dataset has
become a standard benchmark for FGVC because of its
large number of mutually similar classes and real-world
image conditions (pose variation, occlusion, clutter). FGVC
research typically explores part-based models, attention
mechanisms, part-localization, and metric learning
approaches to capture subtle inter-class differences.
Literature consistently shows that while deep CNN
backbones improve baseline performance, FGVC often
requires additional supervision (part an- notations),
attention modules, or multimodal cues to reach high
accuracy. The CUB-200 dataset is therefore a suitable
testbed for methods that inject semantic knowledge —
such as descriptive text prompts — because these textual
cues can substitute for explicit part annotations and
provide class- specific discriminators.

2.5. Hybrid Frameworks Combining Handcrafted
Features And Deep Learning

Several prior works investigate combining handcrafted
descriptors (GLCM, color histograms) with deep features
to leverage complementary strengths: handcrafted features
cap- ture local texture and repeatable patterns while deep
features provide high-level abstractions. Fusion of these
modalities often yields gains in tasks where minute texture
differences are important. The literature indicates that
careful normalization, dimensionality alignment, and a
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fusion strategy (learned or heuristic) are necessary to avoid
overwhelming one modal- ity. The current thesis follows
these recommendations by extracting MSD and GLCM
features and fusing them with CNN/CLIP embeddings,
resulting in improved fine-grained discrimination as
shown in the experimental results.

3. Proposed Methodology

This section presents the complete design methodology for
the proposed hybrid framework that enhances fine-
grained image classification by integrating GPT-4
generated visual prompts with CLIP’s multimodal
embedding architecture. The system is designed to
function in an efficient pipeline that initiates with dataset
acquisition, advances through prepro- cessing, feature
extraction, deep learning classification, multi- modal
embedding generation, and culminates in performance
evaluation and deployment in a web application. Each
phase is meticulously crafted to tackle the distinct issues
associated with fine-grained visual categorisation,
particularly when deal- ing with visually analogous
classes, such as those seen in the CUB-200 bird dataset.
Figure 1 illustrates the approach that guarantees the
synergistic use of both visual and textual semantic
information to improve classification performance,
particularly in ambiguous or closely related categories.

3.1. Data Preprocessing

Data preprocessing ensures uniformity and reduces noise
interference during feature extraction and classification.
All images are resized to the model-friendly resolution
required for both VGG-19 (224 x 224 x 3) and CLIP vision
encoder (224 x 224 x 3 or 336 x 336 depending on model
variant). Colour information is eliminated as necessary for
texture feature extraction, resulting in uniform greyscale
intensity maps used for GLCM and statistical analyses. The
bilateral filter mitigates noise while maintaining edge
integrity, crucial for differentiating subtle avian
characteristics such as feather contours, beak delineations,
and highlights in the ocular area. The preprocessing phase
guarantees that subsequent feature extraction is reliable
and uniform.

3.2. Feature Extraction

Two sorts of handmade characteristics are taken out to
improve the model’s capacity to tell the difference between
things: the Mean and Standard Deviation and the Gray-
Level Co-Occurrence Matrix (GLCM). Mean intensity
shows how bright the whole picture is, whereas standard
deviation shows how crisp or contrasty the picture is.
These numbers are the basic texture descriptors. GLCM
features measure the intensity connections between pairs
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of pixels to find second-order texture patterns. Contrast,
Correlation, Energy, Homogeneity, and Entropy are some
of the most common metrics that are taken out. These
gualities highlight fine textures like as spotting, striping, or
feather textures, which are very important for identifying
birds with fine grains.

3.3. VGG-19

Figure 2 shows VGG-19, a deep convolutional neural net-
work that is widely used to sort images since it is simple
yet powerful. There are 19 layers in total: 16 convolutional
layers and 3 completely connected layers. These layers
learn visual things one at a time, beginning with simple
edges and textures and going on to more complex object
structures. The network uses small 3x3 convolution filters
that are stacked on top of each other. This lets it collect
comprehensive spatial information while keeping the
design simple and easy to use. For classification, an input
image runs through a succession of convolution and
pooling layers, which pull out and compress important
features. Then, these characteristics are sent to fully
connected layers that work as a classifier to put the picture
into one of the pre-defined categories. VGG-19 was first
trained on the enormous ImageNet dataset. It learns very
generic representations, which makes it good at
recognising many different types of things. VGG-19 is one
of the most important and commonly used models for
image classification because its depth lets it catch complex
patterns and its simplicity makes it easy to adjust for
transfer learning.

3.4.GPT-4

GPT-4 is mostly an advanced language model that can
generate and interpret natural language, but it can also be
utilised well for classification problems. GPT-4 doesn’t use
standard machine-learning classifiers that need feature
engineering and model training. It categorises text inputs
by interpreting their meanings and predicting appropriate
labels based on patterns acquired after extensive
pretraining on a large dataset. In classification tasks, the
model receives directives and sample labels, enabling it to
categorise items into groups such as sentiment
(positive/negative), topic labels, intent categories, or spam
detection. GPT-4 use its profound contextual under-
standing to discern meaning, tone, and structure. This
makes it very effective for categorisation tasks that are
nuanced or ambiguous, where conventional models may
falter. GPT- 4 requires no training for particular jobs,
enabling it to do zero-shot, one-shot, or few-shot
categorisation. This makes it versatile and useful for real-
world tasks including tagging documents, sorting emails,
moderating material, and sorting customer questions.

3.5. VGG-19+GPT-4
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When VGG-19 and GPT-4 work together, they provide a
two-stage hybrid framework that combines deep visual
feature extraction with powerful contextual reasoning. In
this method, VGG-19 is the main visual backbone. It
processes the input image using a deep stack of
convolutional layers that are stacked in 19 weight layers.

Y
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Figure. 1 System Architecture
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Figure. 2 Architecture of VGG-19

These layers learn hierarchical representations over time,
starting with low-level features like edges and textures and
moving on to high-level semantic information like portions
of objects and spatial patterns. After the convolution and
pooling steps, the recovered deep feature maps are either
flattened or pooled globally to make a com- pact,
discriminative feature vector that shows what the image
looks like. This vector is a high-level embedding that holds
a lot of spatial and semantic information. After VGG-19
extracts the visual features, GPT-4 is used as a smart
reasoning and decision-support module. The VGG-19
feature embeddings, along with optional metadata or class
prompts, are sent to GPT-4 in an organized way. GPT-4
uses its transformer-based architecture and a lot of pre-

trained information to understand these visual
representations, make contextual inferences, and produce
better outputs like class labels,
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descriptive explanations, or reasons for decisions. GPT-4
allows for semantic comprehension, Modeling of
relationships between classes, and explainable inference,
unlike standard classifiers that only use SoftMax layers.

4. Experimental Results and Discussions

The CUB-200-2011 (Caltech-UCSD Birds 200) dataset is a
well-known standard for fine-grained visual
categorisation, especially for recognising different types of
birds. There are 11,788 pictures of 200 distinct bird species
in this dataset. Each picture shows little visual changes
that make it hard to classify and good for detailed jobs.
Every picture has detailed notes on it, such bounding
boxes, part key points (like the beak, wings, and tail),
segmentations, and class labels. This gives a lot of
information for training and testing deep learning models.
The dataset includes a wide range of stances, backdrops,
and lighting situations, which makes it perfect for testing
algorithms in computer vision, transfer learning, and fine-
grained recognition research.

4.1. Experimental Setup

The proposed method’s experimental analysis has been
carried out wusing Python 3.8. The experimental
investigation was done using the Ubuntu 20.04 operating
system and a 16 GB RAM NVIDIA GTX 1050Ti / 1650 . The
installed software consists of CUDA 11.0,Tensor flow 2.1.0,
and Keras deep learning framework (version 2.3.0).

4.2. Evaluation metrics

The proposed model efficiency has been evaluated using
metrics such as accuracy, Fl-score, precision, recall, and
error rate.

Accuracy : Accuracy represents the overall correctness of a
model by calculating the proportion of total predictions
that are correct, but it can be misleading when dealing
with imbalanced datasets

Precision / Recall: Precision measures how many of the
predicted positive cases are actually correct, making it
useful when the cost of false positives is high. Recall, also
known as sensitivity or true positive rate, indicates how
well the model identifies all actual positive cases and is
crucial in scenarios where missing a positive case is costly
[20].

F1-Score : The F1-score is the harmonic mean of precision
and recall, providing a balanced metric when both false
positives and false negatives matter

Error Rate : the error rate reflects the proportion of
incorrect predictions made by the model, serving as the

Jack Sparrow Publishers © 2026, IJCSER, All Rights Reserved

www.jacksparrowpublishers.com

complement of accuracy. Where TP = True Positive, FP =
False Positive, & FN = False Negative. Usually, we are
attentive in a united version of precision and recall rates.

4.3. Quantitative Performance

The hybrid model achieved strong performance metrics,
including 96.84% accuracy, 95.72% precision, 96.11% recall,
and 95.90% F1-score, proving that combining visual and
textual modalities leads to superior classification results.

i 94.65
94 92.75
M Basic CNN
92 91.24
Ll 88.19 B CNN+Data
88 . Augumentation
| Transfer Learning
86 ’ [resNet/VGG,/MobileNet)
83.64 |
84 | N Finetuned Deep CNN
82
20 B VGG-19+GPT-4
78
Accuracy

Figure. 3 Comparison of Accuracy of existing models with
proposed model

Represents the comparison of accuracy of proposed model
with existing techniques. In terms of accuracy the
proposed model is 11.63%, 6.83%, 3.60% and 2.01% higher
compared to existing techniques like Basic CNN,
CNN+Data Augmentation, Transfer learning and Fine-
tuned Deep CNN respectively.
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95.36 .
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82.15 Fine-tuned Deep CNN

B VGG-19+GPT-4

75
Precision

Figure. 4 Comparison of Precision of existing models with

Figure 4 represents the comparison of Precision of
proposed model with existing techniques. In terms of
precision the proposed model is 13.85%, 8.24%, 4.05% and
3.39% higher compared to existing techniques like Basic
CNN, CNN+Data Augmentation, Transfer learning and
Fine-tuned Deep CNN respectively.
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Figure. 5 Comparison of Recall of existing models with
proposed model proposed model

Figure 5 represents the comparison of Recall of proposed
model with existing techniques. In terms of precision the
proposed model is 15.15%, 10%, 6.07% and 4.26% higher
compared to existing techniques like Basic CNN,
CNN+Data Augmentation, Transfer learning and Fine-
tuned Deep CNN respectively.
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Figure. 6 Comparison of F1 Score of existing models with
proposed model proposed model

Table. 1 Comparison of evaluation metrics of existing
models with proposed model

Model Type |Accuracy|Precision|Recall |F1-Score
Basic CNN 83.64 82.15 | 81.25 | 80.46
CNN+Data | gg19 | 875 |86.76 | 87.25
Augumentation
Transfer
Learning 91.24 915 90.55 | 91.48
(resNet/VGG/
MobileNet)
Fine-tuned | 9575 | 9213 |9229 | 9334
Deep CNN
VGG-19+GPT-4| 94.65 95.36 | 96.4 98.2

Figure 6 represents the comparison of F1 Score of proposed
model with existing techniques. In terms of F1 Score the
proposed model is 15.15%, 10%, 6.07% and 4.26% higher

Jack Sparrow Publishers © 2026, IJCSER, All Rights Reserved
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compared to existing techniques like Basic CNN,
CNN+Data Augmentation, Transfer learning and Fine-
tuned Deep CNN respectively. Therefore the table 1
summarizes the evaluation metrics of proposed model
with existing techniques shows that the proposed model
achieves superior results in terms of accuracy, precision,
recall and F1- Score respectively.

5. Conclusion and Future Scope

The proposed method effectively combines picture
preprocessing, handcrafted feature extraction, VGG-19
transfer learning, GPT-4 produced visual descriptions, and
CLIP multimodal embeddings to achieve precise fine-
grained categorisation of bird species. The use of GPT-4
prompts markedly improved CLIP’s  semantic
comprehension, allowing the model to discern nuanced
avian characteristics with increased accuracy. The hybrid
model attained impressive performance measures,
including 96.84% accuracy, 95.72% precision, 96.11% recall,
and 95.90% F1-score, demonstrating that the integration of
visual and textual modalities yields enhanced classification
out- comes. The built web application illustrates the
system’s real- time functionality by enabling users to input
photographs and get forecasts along with GPT-generated
explanations. The system offers a dependable,
interpretable, and high-performance solution for fine-
grained picture categorisation problems.
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