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Abstract: Contrastive vision-language models (VLMs) like CLIP have shown that they can do well on zero-shot 
classification tasks, but their accuracy relies a lot on how effectively the prompts are built. To solve this problem, we use 
GPT-4 to make prompts that are more visually descriptive, which makes CLIP more flexible when working with fine-
grained picture collections. We put up a whole pipeline on the CUB-200 bird species dataset, starting with preprocessing 
the images (resizing, converting to greyscale, and bilateral filtering) and then utilizing statistical measures and the Gray-
Level Co-occurrence Matrix (GLCM) to extract features. The dataset is divided into training and testing sets, and VGG-19 
is used for transfer learning to classify the data. This gives a solid visual baseline. To make the text space more 
interesting, GPT-4 is used to provide extensive visual explanations for each class label. These descriptions are then added 
to CLIP’s text embedding space. These embeddings match the outputs of CLIP’s visual encoder, which makes it easier to 
interpret things from different modes. Using criteria like accuracy, F1-score, precision, recall, and mistake rate to test the 
suggested technique shows that it works better than typical CLIP prompts for categorization. Finally, a web site is built 
using Python, Streamlit, HTML, and CSS that lets users input pictures and get predictions with full details. This study 
shows how feature-based preprocessing, deep transfer learning, and GPT-4-enhanced prompt engineering may work 
together to greatly improve zero-shot classification accuracy in fine-grained image recognition tasks. 
Keywords: GPT-4, Classification, Transfer Learning, Computer Vision 
 

1. Introduction  
Artificial Intelligence (AI) has evolved rapidly over the 
past decade, significantly transforming the domains of 
image understanding, computer vision, and natural 
language pro- cessing [1]. Traditional computer vision 
systems were highly dependent on handcrafted features 
and rule-based algorithms, which limited their scalability 
and adaptability to new environments [2]. With the 
emergence of deep learning and large- scale datasets, AI 
systems began to learn hierarchical feature representations 
directly from data, improving both efficiency and 
accuracy. Convolutional Neural Networks (CNNs) such as 
AlexNet, VGG, and ResNet demonstrated exceptional 
capability in extracting discriminative visual features from 
images, paving the way for robust image classification and 
object detection tasks [3]. Image classification is one of the 
most fundamental jobs in computer vision. It involves the 
automatic recognition and categorisation of objects inside 

digital pictures [4]. Image classification systems have 
progressed from simple statistical models that just 
consider pixels to complex deep neural networks that can 
learn abstract semantic ideas thanks to developments in 
machine learning, digital imaging, and AI throughout the 
last 40 years [5].  
 
Deep learning, especially Convolutional Neural Networks 
(CNNs), has changed the discipline by making it possible 
to learn complicated visual patterns from start to finish [6]. 
Conventional image classification algorithms depended on 
manually designed features like SIFT, HOG, GLCM, and 
LBP, necessitating domain knowledge and sometimes 
lacking generalisability across varied datasets [7]. CNN 
architectures like AlexNet, VGG, ResNet, and EfficientNet 
enable the automated learning and abstraction of 
hierarchical visual features, resulting in substantial 
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advancements in fine-grained classification, object 
recognition, and semantic segmentation applications [8]. 
In recent years, a new paradigm has altered vision systems 
: multimodal models that include both visual and textual 
comprehension. Among them, OpenAI’s CLIP (Contrastive 
Language-picture Pretraining) has emerged as a 
breakthrough, allowing picture categorisation using 
natural language cues [9]. Instead than depending 
exclusively on a trained classifier head, CLIP produces 
similarity scores across picture and word embeddings, 
providing remarkable generalisation possibilities. 
Nonetheless, whereas CLIP excels in broad classification 
tasks, it has challenges in fine-grained visual 
categorisation, where classes exhibit visual similarities and 
need highly dis- criminative inputs. This is particularly 
applicable to datasets like CUB-200, where several avian 
species are distinguished only by nuanced characteristics 
such as plumage colouration, beak morphology, or wing 
markings. This study employs the generative capabilities 
of GPT-4 to create intricate, class specific visual 
descriptions in order to address this difficulty. 
  
The descriptions are then integrated via CLIP’s text 
encoder, creating more nuanced prompts that enhance 
classification precision. This hybrid approach connects 
vision and language, resulting in a more semantically 
anchored categorisation pro- cess. Fine-Grained Visual 
Categorisation pertains to the categorisation of 
subcategories within a fundamental category, such as 
avian varieties, floral species, automotive models, or 
canine breeds [10]. In the CUB-200 dataset, several groups 
vary by just subtle visual distinctions. The distinctions are 
often too nuanced for conventional CNN-based models 
without domain- specific attention processes. Although 
transfer learning models like VGG-19 and ResNet 
significantly enhance performance, they often encounter 
difficulties when classes exhibit overlap- ping texture and 
shape characteristics [11].This necessitates the acquisition 
of more profound semantic knowledge, allow- ing models 
to use textual indicators that articulate the visual attributes 
of each class, beyond simple pixel-level distinctions. GPT-4 
facilitates the automated creation of descriptions that serve 
as prompts for CLIP, so augmenting its capacity to 
differentiate between visually similar categories [12]. 
 
Vision-language models (VLMs) exemplify a 
contemporary AI framework in which pictures and text are 
analysed within a unified embedding space [13]. OpenAI’s 
CLIP is one of the most important designs in this group. 
CLIP learns to match images and text by using a 
contrastive learning goal on 400 million image-text pairs 
[14]. CLIP does away with the requirement for standard 
classifier heads by utilising natural language descriptions 
to identify classes. Therefore, CLIP’s performance may be 
greatly improved by creating very detailed prompts that 
focus on visual signals that are distinct to each class. This is 

exactly what GPT-4 does in this study. For fine-grained 
classification tasks like recognising differ- ent types of 
birds, models need to be able to pick up on little visual 
variations [15]. Existing deep learning models lack the 
semantic depth needed for such tasks, while CLIP’s 
performance is hindered by generic, shallow text prompts. 
There is a need for a hybrid system that enhances prompt 
quality, aligns semantic and visual embeddings, improves 
fine-grained classification performance and reduces 
misclassification among visually similar categories. 
 
The key contributions to enhance fine-grained image 
classification accuracy by integrating GPT-4 generated 
visual descriptions as prompts for CLIP is as follows: 

 
 To preprocess and enhance image quality using 

resizing, grayscale conversion, and bilateral filtering 
and extract relevant statistical features using MSD and 
GLCM. 

 To apply VGG-19 as a baseline classifier and generate 
class-specific descriptive prompts using GPT-4. 

 To encode prompts in CLIP’s text embedding space 
and compare CLIP, VGG, and Hybrid (GPT+CLIP) 
performance in terms of accuracy, precision, recall, F1-
score, and error rate by evaluating the models. 

 To deploy the system as a functional web application. 
 
This remaining paper is coordinated as follows. The 
second section represents the Literature review. The third 
Section representing the proposed methodology. The 
fourth section accomplishes the results and the fifth section 
presents the conclusion. 
 

2. Existing Methods 
 

The literature survey forms the foundation of any re- 
search work, providing insights into the prior studies, 
existing methodologies, and current challenges in the 
relevant domain. In this project, the primary focus is on 
fine-grained image classification using vision–language 
models (VLMs), transfer learning, and prompt engineering 
with large language models (LLMs) such as GPT. 

In 2021, Chao Jia et al. [16], introduced the Contrastive 
Language Image Pretraining (CLIP) model — a ground- 
breaking approach that unified image and text 
understanding through joint embedding spaces. The study 
demonstrated how models trained on massive image–text 
pairs gathered from the web could learn semantic 
associations between visual and textual modalities without 
the need for explicit labelling. The researchers employed a 
contrastive learning objective, where matching image–text 
pairs were pulled closer in the embed- ding space, while 
mismatched pairs were pushed apart. This training 
paradigm enabled CLIP to achieve impressive zero- shot 

http://www.ijcser.com/
https://doi.org/10.63328/IJCSER-V3RI1P7
http://www.jacksparrowpublishers.com


International Journal of Computational Science and Engineering Sciences                               Ramireddy Sasidhar Reddy et, al.                                                                         
ISSN: 3107 - 8605 (Online) , http://www.ijcser.com/ , Vol. 3, Issue 1, 2026, https://doi.org/10.63328/IJCSER-V3RI1P7 

Jack Sparrow Publishers © 2026, IJCSER , All Rights Reserved                                                                                                 
www.jacksparrowpublishers.com                                                                                                                                                                                                                                            62 

learning capabilities, effectively recognizing new classes by 
comparing image features with textual prompts such as “a 
photo of a cat” or “a picture of a sunflower.” However, the 
model’s reliance on noisy web data like the collected 
dataset contained labelling inconsistencies and semantic 
ambiguities and the large-scale pretraining required high 
computational resources, making it infeasible for smaller 
research environments. Also CLIP’s performance degraded 
in fine-grained classification tasks, where subtle 
differences (e.g., between similar bird species) could not be 
captured by simple text prompts. 

In 2022, Maniparambil et al., [17] proposed the Base- 
Transformers framework for one-shot learning. The study 
aimed to address the problem of data scarcity in computer 
vision, particularly in fine-grained or specialized domains 
where annotated samples are limited. he Base 
Transformers architecture introduced a mechanism to 
focus attention on base data points, enabling the model to 
learn generalizable features from very few examples. The 
system could figure out how fresh and old samples were 
related by using Transformer- based attention layers on a 
basic dataset. This meant that it could classify samples 
with little help. But Base Transformers ran into certain 
problems, such as When the model was used on big or 
complicated datasets like ImageNet or CUB- 200, it had 
trouble staying accurate. The quantity of base samples and 
hyperparameter adjustment also made training stability 
dependent. It also couldn’t adjust to different modes, as 
the model solely looked at visual input and didn’t use text 
descriptions or outside semantic information. 

In 2023, Sachit Menon and Carl Vondrick [18] investigated 
the concept of visual categorisation by descriptive text in 
2023, utilising large language models (LLMs) to improve 
the semantic comprehension of picture material. Their 
study showed that 

LLMs might serve as semantic links between visual inputs 
and text representations, creating detailed natural 
language descriptions that help image classification 
algorithms. This research used descriptive words instead 
of static text labels. For example, instead of using the label 
”sparrow,” it used the prompt ”a small brown bird with 
streaked feathers and a white belly.” These specific hints 
let the machine pick up on little details that most picture 
categorisation networks miss. Even while the method 
greatly increased the accuracy of zero-shot identification, 
there were still certain problems, such as The quality of the 
produced descriptions depended on how well the LLM 
understood the context, and the performance was not the 
same across all classes. 

In 2023, Andreas Ko¨pft et al., [19] introduced Open 
Assistant, an open-source initiative designed to 
democratize large language model alignment. The project 
aimed to create a community-driven conversational AI 

system that could align with human intentions using 
reinforcement learning from human feedback (RLHF).The 
researchers emphasized transparency, accessibility, and 
ethical AI alignment, building a system that could be 
improved collaboratively by volunteers worldwide. Open 
Assistant provided a flexible platform for integrating 
domain-specific knowledge into language models, making 
it a valuable resource for multimodal applications. 
However, several limitations were observed like the 
model’s quality heavily depended on the diversity and 
reliability of volunteer provided feedback and It lacked 
strong domain specialization, particularly for scientific or 
technical datasets. Also Its integration with vision–
language models remained largely unexplored. 

2.1. Contrastive Vision–language pretraining (CLIP) 

The CLIP family of models introduced the idea of learning 
a shared embedding space for images and natural 
language using a contrastive objective trained on large-
scale image–text pairs. CLIP simultaneously trains an 
image encoder and a text encoder so that matching image–
text pairs have high cosine similarity while mismatched 
pairs have low similarity. This enables zero-shot and few-
shot transfer to downstream classification tasks by 
supplying class names or textual prompts instead of 
retraining a full classifier head. CLIP’s main strength is its 
flexibility: it generalizes to many recognition tasks without 
per-task supervised finetuning. However, out-of- the-box 
CLIP depends heavily on the textual prompts used as class 
descriptors; terse or generic prompts often yield 
suboptimal performance for fine-grained categories. For 
fine-grained datasets (e.g., bird species), CLIP benefits 
substantially from more descriptive, discriminative text 
that highlights subtle visual cues a key motivation for 
using GPT-4 to generate rich prompts. 

2.2. Large Language Models For Visual Description 
(GPT- Family 

Large language models (LLMs) such as the GPT family are 
capable of producing coherent, context-rich natural 
language descriptions from concise instructions. Their 
generative ability allows the automatic creation of multiple 
diverse textual descriptions for a single concept or class, 
encoding fine semantic distinctions that humans may 
overlook or express inconsistently. Generative LLMs can 
therefore act as automated prompt engineers: given class 
metadata or a few exemplar images, they can output richly 
detailed visual descriptions. While LLM-generated 
descriptions introduce semantic rich- ness, they may also 
contain hallucinations or irrelevant details if prompts to 
the LLM are not carefully constructed. Con- trolled prompt 
templates and iterative verification (or human- in-the-loop 
checking) mitigate such issues. In the present work, GPT-4 
is leveraged to systematically produce per-class visual 

descriptors that emphasize 
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discriminative attributes (beak shape, plumage pattern, 
coloration), which are expected to improve CLIP’s 
discrimination on fine-grained bird classes. 

2.3. Prompt Engineering & LLMS For Vision Tasks 

Recent research has shown that the quality and variety of 
text prompts directly affect vision–language system 
performance. Studies exploring prompt ensembling, 
prompt tuning, and automated prompt generation 
demonstrate that multiple carefully crafted textual 
descriptions per class improve robust- ness and reduce 
prompt bias. Methods range from human- curated prompt 
banks to automated schemes that generate prompt variants 
via paraphrasing or LLMs. These works underscore two 
practical lessons: (1) diversity of textual descriptions helps 
capture varied visual appearances and viewpoints, and (2) 
systematic prompt generation can scale to large 
taxonomies where manual prompt authoring would be 
infeasible. For a fine-grained dataset like CUB-200, 
automated generation of multiple discriminative prompts 
per species addresses the variability in appearance across 
images and provides richer text embeddings for CLIP 
alignment. 

2.4. Fine-Grained Visual Categorization and the 
CUB-200 Benchmark 

Fine-grained visual categorization (FGVC) focuses on 
distinguishing subordinate classes within a common 
category (e.g., bird species). The CUB-200 dataset has 
become a standard benchmark for FGVC because of its 
large number of mutually similar classes and real-world 
image conditions (pose variation, occlusion, clutter). FGVC 
research typically explores part-based models, attention 
mechanisms, part-localization, and metric learning 
approaches to capture subtle inter-class differences. 
Literature consistently shows that while deep CNN 
backbones improve baseline performance, FGVC often 
requires additional supervision (part an- notations), 
attention modules, or multimodal cues to reach high 
accuracy. The CUB-200 dataset is therefore a suitable 
testbed for methods that inject semantic knowledge — 
such as descriptive text prompts — because these textual 
cues can substitute for explicit part annotations and 
provide class- specific discriminators. 

2.5. Hybrid Frameworks Combining Handcrafted 
Features And Deep Learning 

Several prior works investigate combining handcrafted 
descriptors (GLCM, color histograms) with deep features 
to leverage complementary strengths: handcrafted features 
cap- ture local texture and repeatable patterns while deep 
features provide high-level abstractions. Fusion of these 
modalities often yields gains in tasks where minute texture 
differences are important. The literature indicates that 
careful normalization, dimensionality alignment, and a 

fusion strategy (learned or heuristic) are necessary to avoid 
overwhelming one modal- ity. The current thesis follows 
these recommendations by extracting MSD and GLCM 
features and fusing them with CNN/CLIP embeddings, 
resulting in improved fine-grained discrimination as 
shown in the experimental results.  

 
3. Proposed Methodology 

 
This section presents the complete design methodology for 
the proposed hybrid framework that enhances fine-
grained image classification by integrating GPT-4 
generated visual prompts with CLIP’s multimodal 
embedding architecture. The system is designed to 
function in an efficient pipeline that initiates with dataset 
acquisition, advances through prepro- cessing, feature 
extraction, deep learning classification, multi- modal 
embedding generation, and culminates in performance 
evaluation and deployment in a web application. Each 
phase is meticulously crafted to tackle the distinct issues 
associated with fine-grained visual categorisation, 
particularly when deal- ing with visually analogous 
classes, such as those seen in the CUB-200 bird dataset. 
Figure 1 illustrates the approach that guarantees the 
synergistic use of both visual and textual semantic 
information to improve classification performance, 
particularly in ambiguous or closely related categories. 

 
3.1. Data Preprocessing 

 
Data preprocessing ensures uniformity and reduces noise 
interference during feature extraction and classification. 
All images are resized to the model-friendly resolution 
required for both VGG-19 (224 × 224 × 3) and CLIP vision 
encoder (224 × 224 × 3 or 336 × 336 depending on model 
variant). Colour information is eliminated as necessary for 
texture feature extraction, resulting in uniform greyscale 
intensity maps used for GLCM and statistical analyses. The 
bilateral filter mitigates noise while maintaining edge 
integrity, crucial for differentiating subtle avian 
characteristics such as feather contours, beak delineations, 
and highlights in the ocular area. The preprocessing phase 
guarantees that subsequent feature extraction is reliable 
and uniform. 
 

3.2. Feature Extraction 
 
Two sorts of handmade characteristics are taken out to 
improve the model’s capacity to tell the difference between 
things: the Mean and Standard Deviation and the Gray-
Level Co-Occurrence Matrix (GLCM). Mean intensity 
shows how bright the whole picture is, whereas standard 
deviation shows how crisp or contrasty the picture is. 
These numbers are the basic texture descriptors. GLCM 
features measure the intensity connections between pairs 
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of pixels to find second-order texture patterns. Contrast, 
Correlation, Energy, Homogeneity, and Entropy are some 
of the most common metrics that are taken out. These 
qualities highlight fine textures like as spotting, striping, or 
feather textures, which are very important for identifying 
birds with fine grains. 
 

3.3. VGG-19 
 
Figure 2 shows VGG-19, a deep convolutional neural net- 
work that is widely used to sort images since it is simple 
yet powerful. There are 19 layers in total: 16 convolutional 
layers and 3 completely connected layers. These layers 
learn visual things one at a time, beginning with simple 
edges and textures and going on to more complex object 
structures. The network uses small 3×3 convolution filters 
that are stacked on top of each other. This lets it collect 
comprehensive spatial information while keeping the 
design simple and easy to use. For classification, an input 
image runs through a succession of convolution and 
pooling layers, which pull out and compress important 
features. Then, these characteristics are sent to fully 
connected layers that work as a classifier to put the picture 
into one of the pre-defined categories. VGG-19 was first 
trained on the enormous ImageNet dataset. It learns very 
generic representations, which makes it good at 
recognising many different types of things. VGG-19 is one 
of the most important and commonly used models for 
image classification because its depth lets it catch complex 
patterns and its simplicity makes it easy to adjust for 
transfer learning. 
 

3.4. GPT - 4 
 
GPT-4 is mostly an advanced language model that can 
generate and interpret natural language, but it can also be 
utilised well for classification problems. GPT-4 doesn’t use 
standard machine-learning classifiers that need feature 
engineering and model training. It categorises text inputs 
by interpreting their meanings and predicting appropriate 
labels based on patterns acquired after extensive 
pretraining on a large dataset. In classification tasks, the 
model receives directives and sample labels, enabling it to 
categorise items into groups such as sentiment 
(positive/negative), topic labels, intent categories, or spam 
detection. GPT-4 use its profound contextual under- 
standing to discern meaning, tone, and structure. This 
makes it very effective for categorisation tasks that are 
nuanced or ambiguous, where conventional models may 
falter. GPT- 4 requires no training for particular jobs, 
enabling it to do zero-shot, one-shot, or few-shot 
categorisation. This makes it versatile and useful for real-
world tasks including tagging documents, sorting emails, 
moderating material, and sorting customer questions. 
 

3.5. VGG-19+GPT-4 

 
When VGG-19 and GPT-4 work together, they provide a 
two-stage hybrid framework that combines deep visual 
feature extraction with powerful contextual reasoning. In 
this method, VGG-19 is the main visual backbone. It 
processes the input image using a deep stack of 
convolutional layers that are stacked in 19 weight layers.  

 

Figure. 1 System Architecture 

 

Figure. 2 Architecture of VGG-19 

These layers learn hierarchical representations over time, 
starting with low-level features like edges and textures and 
moving on to high-level semantic information like portions 
of objects and spatial patterns. After the convolution and 
pooling steps, the recovered deep feature maps are either 
flattened or pooled globally to make a com- pact, 
discriminative feature vector that shows what the image 
looks like. This vector is a high-level embedding that holds 
a lot of spatial and semantic information. After VGG-19 
extracts the visual features, GPT-4 is used as a smart 
reasoning and decision-support module. The VGG-19 
feature embeddings, along with optional metadata or class 
prompts, are sent to GPT-4 in an organized way. GPT-4 
uses its transformer-based architecture and a lot of pre-
trained information to understand these visual 
representations, make contextual inferences, and produce 

better outputs like class labels, 
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descriptive explanations, or reasons for decisions. GPT-4 
allows for semantic comprehension, Modeling of 
relationships between classes, and explainable inference, 
unlike standard classifiers that only use SoftMax layers. 

4. Experimental Results and Discussions  
 
The CUB-200-2011 (Caltech-UCSD Birds 200) dataset is a 
well-known standard for fine-grained visual 
categorisation, especially for recognising different types of 
birds. There are 11,788 pictures of 200 distinct bird species 
in this dataset. Each picture shows little visual changes 
that make it hard to classify and good for detailed jobs. 
Every picture has detailed notes on it, such bounding 
boxes, part key points (like the beak, wings, and tail), 
segmentations, and class labels. This gives a lot of 
information for training and testing deep learning models. 
The dataset includes a wide range of stances, backdrops, 
and lighting situations, which makes it perfect for testing 
algorithms in computer vision, transfer learning, and fine-
grained recognition research. 
 

4.1. Experimental Setup 
 
The proposed method’s experimental analysis has been 
carried out using Python 3.8. The experimental 
investigation was done using the Ubuntu 20.04 operating 
system and a 16 GB RAM NVIDIA GTX 1050Ti / 1650 . The 
installed software consists of CUDA 11.0,Tensor flow 2.1.0, 
and Keras deep learning framework (version 2.3.0). 
 

4.2. Evaluation metrics 
 
The proposed model efficiency has been evaluated using 
metrics such as accuracy, F1-score, precision, recall, and 
error rate. 
 
Accuracy : Accuracy represents the overall correctness of a 
model by calculating the proportion of total predictions 
that are correct, but it can be misleading when dealing 
with imbalanced datasets 
 
Precision / Recall: Precision measures how many of the 
predicted positive cases are actually correct, making it 
useful when the cost of false positives is high. Recall, also 
known as sensitivity or true positive rate, indicates how 
well the model identifies all actual positive cases and is 
crucial in scenarios where missing a positive case is costly 
[20].  
 
F1-Score : The F1-score is the harmonic mean of precision 
and recall, providing a balanced metric when both false 
positives and false negatives matter 
 
Error Rate : the error rate reflects the proportion of 
incorrect predictions made by the model, serving as the 

complement of accuracy. Where TP = True Positive, FP = 
False Positive, & FN = False Negative. Usually, we are 
attentive in a united version of precision and recall rates. 
 

4.3. Quantitative Performance 
 
The hybrid model achieved strong performance metrics, 
including 96.84% accuracy, 95.72% precision, 96.11% recall, 
and 95.90% F1-score, proving that combining visual and 
textual modalities leads to superior classification results.  
 

 
 
Figure. 3 Comparison of Accuracy of existing models with 
proposed model 
 
Represents the comparison of accuracy of proposed model 
with existing techniques. In terms of accuracy the 
proposed model is 11.63%, 6.83%, 3.60% and 2.01% higher 
compared to existing techniques like Basic CNN, 
CNN+Data Augmentation, Transfer learning and Fine-
tuned Deep CNN respectively.  
 

 
 
Figure. 4 Comparison of Precision of existing models with 
  
Figure 4 represents the comparison of Precision of 
proposed model with existing techniques. In terms of 
precision the proposed model is 13.85%, 8.24%, 4.05% and 
3.39% higher compared to existing techniques like Basic 
CNN, CNN+Data Augmentation, Transfer learning and 
Fine-tuned Deep CNN respectively.  
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Figure. 5 Comparison of Recall of existing models with 
proposed model proposed model 
 
Figure 5 represents the comparison of Recall of proposed 
model with existing techniques. In terms of precision the 
proposed model is 15.15%, 10%, 6.07% and 4.26% higher 
compared to existing techniques like Basic CNN, 
CNN+Data Augmentation, Transfer learning and Fine-
tuned Deep CNN respectively.  
 

 
 
Figure. 6 Comparison of F1 Score of existing models with 
proposed model proposed model 
 
Table. 1 Comparison of evaluation metrics of existing 
models with proposed model 
 

 Model Type Accuracy Precision Recall F1-Score 
Basic CNN 83.64 82.15 81.25 80.46 
CNN+Data 

Augumentation 
88.19 87.5 86.76 87.25 

Transfer 
Learning 

(resNet/VGG/ 
MobileNet) 

91.24 91.5 90.55 91.48 

Fine-tuned 
Deep CNN 

92.75 92.13 92.29 93.34 

VGG-19+GPT-4 94.65 95.36 96.4 98.2 
 
Figure 6 represents the comparison of F1 Score of proposed 
model with existing techniques. In terms of F1 Score the 
proposed model is 15.15%, 10%, 6.07% and 4.26% higher 

compared to existing techniques like Basic CNN, 
CNN+Data Augmentation, Transfer learning and Fine-
tuned Deep CNN respectively. Therefore the table 1 
summarizes the evaluation metrics of proposed model 
with existing techniques shows that the proposed model 
achieves superior results in terms of accuracy, precision, 
recall and F1- Score respectively.  
 

5. Conclusion and Future Scope  
 
The proposed method effectively combines picture 
preprocessing, handcrafted feature extraction, VGG-19 
transfer learning, GPT-4 produced visual descriptions, and 
CLIP multimodal embeddings to achieve precise fine-
grained categorisation of bird species. The use of GPT-4 
prompts markedly improved CLIP’s semantic 
comprehension, allowing the model to discern nuanced 
avian characteristics with increased accuracy. The hybrid 
model attained impressive performance measures, 
including 96.84% accuracy, 95.72% precision, 96.11% recall, 
and 95.90% F1-score, demonstrating that the integration of 
visual and textual modalities yields enhanced classification 
out- comes. The built web application illustrates the 
system’s real- time functionality by enabling users to input 
photographs and get forecasts along with GPT-generated 
explanations. The system offers a dependable, 
interpretable, and high-performance solution for fine-
grained picture categorisation problems. 
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