

Satellite Image Classification by using Artificial Intelligence

K Lakshmaiah ^{1*}, V Umera Sulthana ², N. Sujitha ³, S Ramya Sree ⁴, K Sravani ⁵

¹⁻⁵Department of CSE , Aditya College of Engineering , Madanapalle , Andhra Pradesh , India;

Corresponding Author : K Lakshmaiah ; klakshmaiah78@gmail.com

Abstract: Satellite imagery plays a vital role in various fields, including agriculture, urban planning, disaster management, and environmental monitoring. Efficient and accurate classification of satellite images is essential for extracting valuable information and making informed decisions. In this study, we propose the use of artificial intelligence techniques for satellite image classification. A comprehensive dataset of labelled satellite images is collected, representing different land cover types or objects of interest. The dataset is pre-processed to enhance the image quality, remove noise, and normalize the data. Data augmentation techniques such as rotation, scaling, and flipping are applied to increase the dataset size and improve the model's generalization ability. Future research directions may include exploring advanced deep learning architectures, such as attention mechanisms or graph neural networks, to further improve the classification performance. Additionally, the integration of multi-sensor satellite data and temporal analysis can enhance the capabilities of the classification models for dynamic monitoring and change detection applications.

Keywords: Satellite Imagery, AI, Image Classification, CNN, DL, Transfer Learning, Data Augmentation.

1. Introduction

Deep learning is a powerful subset of machine learning, widely applied to satellite image analysis. Satellites orbiting Earth capture valuable data about our planet's surface. Convolutional Neural Networks (CNNs) are crucial for processing satellite images. Applications include land use classification, change detection, object identification, and disaster management. Challenges include data quality and model complexity. Ethical and privacy concerns can arise in high-resolution imagery. Future directions involve explainable AI and integration with other data sources. Deep learning enhances our ability to monitor Earth's changes and make informed decisions for various sectors. Its continued evolution promises even greater insights from satellite imagery.

Satellite image classification using deep learning has emerged as a revolutionary approach to analyzing and interpreting satellite data. Deep learning, a branch of artificial intelligence (AI), relies on neural networks to identify complex patterns in data, making it a powerful tool for extracting meaningful information from satellite imagery. This approach has gained traction due to its ability to process large volumes of data with high accuracy and efficiency.

Traditional methods of satellite image classification often required extensive manual effort and were prone to human error. Deep learning transforms this process by automating classification tasks, reducing human intervention, and

enhancing consistency. Convolutional Neural Networks (CNNs), a key technology in deep learning, excel at recognizing visual patterns and features, enabling detailed analysis of satellite images.

The applications of deep learning in satellite image classification are vast and varied. From urban planning and environmental monitoring to disaster response and agriculture, deep learning enables rapid, scalable, and accurate analyses. Its ability to process multi-spectral and hyperspectral data adds further depth to the insights that can be derived.

As a result, deep learning-based satellite image classification is becoming indispensable in various fields, driving advancements in research, industry, and environmental management. The convergence of satellite technology and deep learning promises a future where insights from space lead to better decision-making on Earth.

Artificial Intelligence (AI) has had a profound impact on satellite image classification, revolutionizing how we analyze and interpret vast amounts of satellite data. Here are some of the key impacts:

Improved Accuracy: AI, particularly deep learning and machine learning models, has significantly improved the accuracy of satellite image classification. Neural networks, such as Convolutional Neural Networks (CNNs), are exceptionally good at detecting patterns and features in

images, leading to more accurate classification of satellite imagery.

Automation and Efficiency: AI automates the process of satellite image classification, reducing the need for manual analysis. This increases efficiency and allows for processing large volumes of data quickly, which is crucial for monitoring large areas or frequent satellite updates.

High-Resolution Analysis: AI-based models can analyze high-resolution satellite images, enabling detailed classification of various features like buildings, vegetation, water bodies, and more. This capability is beneficial for urban planning, environmental monitoring, and disaster response.

Multi-Spectral and Hyperspectral Analysis: AI can handle multi-spectral and hyperspectral data, allowing for more comprehensive analysis. This capability helps identify specific materials, track environmental changes, and detect subtle variations in land cover.

Scalability and Big Data: AI facilitates scalable analysis, allowing organizations to process and classify satellite imagery at scale. This scalability is essential for projects involving global monitoring or extensive satellite constellations.

Real-Time Monitoring: AI's automation and speed enable near real-time monitoring using satellite imagery. This is critical for applications like disaster response, where timely information can save lives and resources.

Reduction in Human Error: By automating satellite image classification, AI reduces the risk of human error, leading to more consistent and reliable results.

Enhanced Data Integration: AI can integrate satellite imagery with other data sources, such as Geographic Information Systems (GIS), sensor data, and social media, providing a more holistic view of the environment or specific events.

Cost-Effectiveness: Automation and improved accuracy lead to cost savings in satellite image analysis, making it more accessible for various applications.

Deep learning, a subset of artificial intelligence (AI), has had a transformative impact on satellite image classification. It allows for more advanced, efficient, and accurate analysis of satellite imagery, influencing a wide range of applications from urban planning to environmental monitoring. Here are the key impacts of deep learning in satellite image classification:

High Accuracy and Precision: Deep learning models, especially Convolutional Neural Networks (CNNs), can identify complex patterns and features in satellite images with high precision. This has led to improved accuracy in identifying land cover, objects, and other features.

Automation and Scalability: Deep learning automates the classification process, enabling large-scale processing of satellite imagery. This scalability is crucial for applications requiring global or repeated analyses, like climate monitoring and disaster response.

Handling Diverse Data Sources: Deep learning can process a variety of data types, including multispectral and hyperspectral imagery. This versatility allows for more comprehensive analyses, like distinguishing different types of vegetation, detecting water quality, and identifying specific materials.

Reduction in Manual Labor and Human Error: By automating tasks, deep learning reduces the need for manual analysis, minimizing human error and improving consistency. This enhances the reliability of results and speeds up processing.

Real-Time Monitoring and Response: Deep learning's efficiency allows for near real-time analysis, which is critical in time-sensitive scenarios like disaster response, deforestation monitoring, or urban traffic analysis.

Feature Detection and Object Recognition: Deep learning models are adept at object recognition and feature detection. This capability is vital for identifying infrastructure, vehicles, buildings, agricultural fields, and more within satellite images.

Improved Analysis of Complex Scenarios: Deep learning excels at understanding complex relationships within data. This is useful for more advanced analyses, such as tracking urban growth, assessing environmental impacts, and monitoring agricultural health.

Cross-Disciplinary Applications: The impact of deep learning in satellite image classification extends to various fields, such as agriculture, environmental science, urban planning, transportation, national security, and climate studies.

Cost-Effectiveness and Resource Optimization: The automation and accuracy provided by deep learning lead to cost savings in satellite image analysis. It allows for better resource allocation and reduces the time needed for manual analysis.

Integration with Other AI Techniques: Deep learning can be integrated with other AI techniques, like reinforcement learning or generative models, to create more comprehensive solutions. This enhances the potential applications and effectiveness of satellite image classification.

2. Literature Survey

As the number of satellite networks increases, the radio spectrum is becoming more congested, prompting the need to explore higher frequencies. However, it is more

difficult to operate at higher frequencies due to severe impairments caused by varying atmospheric conditions. Hence, radio channel forecasting is crucial for operators to adjust and maintain the link's quality. This paper presents a practical approach for Q/V-band modeling for low Earth orbit satellite channels based on tools from machine learning and statistical modeling [1].

The developed Q/V-band LEO satellite channel model is composed of:

- forecasting method using model-based deep learning, intended for real-time operation of satellite terminals; and
- statistical channel simulator that generates a time-series path-loss random process, intended for system design and research.

Both approaches capitalize on real-measurements obtained from AlphaSat's Q/V-band transmitter at different geographic latitudes. The results show that model-based deep learning can outperform simple statistical and deep learning methods by at least 50%. Moreover, the model is capable of incorporating varying rain and elevation angle profiles.[1]

With the expansion of satellite constellation, routing techniques for small-scale satellite networks have problems in routing overhead and forwarding efficiency. This paper proposes a vector segment routing method for large-scale multi-layer satellite networks. A vector forwarding path is built based on the location between the source and the destination. Data packets are forwarded along this vector path, shielding the influence of satellite motion on routing forwarding. Then, a dynamic route maintenance strategy is suggested [2].

In a multi-layer satellite network, the low-orbit satellites are in charge of computing the routing tables for one area, and the routing paths are dynamically adjusted in the area in accordance with the network. The medium-orbit satellites maintain the connectivity of vector paths in multiple segmented areas. The forwarding mode based on the source and destination location improves the forwarding efficiency, and the segmented route maintenance mode decreases the routing overhead.

The simulation results indicate that vector segment routing has significant performance advantages in end-to-end delay, packet loss rate, and throughput in a multi-layer satellite network. We also simulate the impact of routing table update mechanism on network performance and overhead and give the performance of segmented vector routing in multi layer low-orbit satellite networks.

A literature survey on the utilization of Low Earth Orbit (LEO) satellite channels for satellite image classification through Artificial Intelligence (AI) techniques reveals a dynamic landscape of research and innovation. LEO satellites, orbiting at relatively low altitudes, offer a wealth of spectral information captured across various wavelengths, including visible, near-infrared, shortwave infrared, and thermal infrared bands. These satellites play a pivotal role in acquiring high-resolution imagery of the Earth's surface, facilitating applications in environmental monitoring, disaster management, urban planning, and agriculture. Traditional methods of satellite image classification often relied on manual feature extraction and simplistic classification algorithms, leading to limitations in accuracy and scalability. However, the emergence of AI techniques, particularly deep learning algorithms such as Convolutional Neural Networks (CNNs), has revolutionized the field by enabling automatic feature extraction and classification directly from raw satellite imagery.

Recent studies have demonstrated the efficacy of AI-based approaches in satellite image classification tasks using LEO satellite channels. For instance, Zhang et al. (2020) proposed a novel deep learning framework that integrates spectral and spatial information from multispectral images captured by LEO satellites. Their model achieved state-of-the-art performance in land cover classification by leveraging the rich spectral signatures inherent in satellite imagery. Similarly, advancements in transfer learning techniques have allowed researchers to adapt pre-trained CNN models to satellite image classification tasks, even with limited labeled training data. This approach has been particularly beneficial in scenarios where collecting extensive ground truth data is challenging or impractical.

Despite the progress made in AI-based satellite image classification, several challenges persist. One significant challenge is the scarcity of labeled training data, especially for specialized land cover classes or regions with limited ground truth information. Additionally, atmospheric conditions, sensor noise, and geometric distortions can introduce uncertainties into satellite imagery, posing challenges for accurate classification. Addressing these challenges requires innovative solutions, including data augmentation techniques, domain adaptation strategies, and the development of robust AI models capable of handling noisy and imperfect satellite data.

Looking ahead, the future of satellite image classification lies in the seamless integration of AI techniques with emerging technologies such as unmanned aerial vehicles (UAVs) and high-resolution satellite constellations. By combining data from multiple sources, researchers can enhance the temporal and spatial resolution of satellite imagery, enabling more precise and

timely classification of dynamic environmental phenomena. Furthermore, advancements in real-time processing and analysis capabilities will unlock new opportunities for applications in disaster response, environmental monitoring, and precision agriculture. Overall, the synergy between LEO satellite channels and AI techniques holds immense promise for advancing our understanding of the Earth's surface and addressing complex challenges facing our planet.

3. Theory of Calculator

Satellite image classification is a foundational task in remote sensing, providing insights into land cover, vegetation, urban development, and other significant features from a high vantage point. Traditional approaches relied on manual interpretation or simple algorithms, but artificial intelligence (AI) has introduced more advanced and automated methods. This comprehensive theory discusses the principles behind satellite image classification using AI, emphasizing machine learning and deep learning techniques, data preprocessing, feature extraction, and model development.

Fundamentals of Satellite Imagery

Satellite imagery encompasses a variety of data collected from space-based sensors. The data is captured in several forms, including optical (visible light), multispectral (multiple bands), hyperspectral (many narrow bands), and radar (radio waves). Each type provides unique information about the Earth's surface and is used in different applications.

Data Preprocessing

Before satellite imagery can be classified, it typically undergoes preprocessing. This step ensures data quality and consistency, allowing for accurate analysis. Key preprocessing steps include:

Radiometric Calibration: Adjusting pixel values to correct sensor-related inconsistencies and atmospheric effects.

Geometric Correction: Aligning images with geographic coordinates to ensure spatial accuracy.

Noise Reduction: Removing unwanted artifacts and smoothing the data to improve signal quality.

Feature Extraction and Representation

Feature extraction is a critical step in satellite image classification, where relevant information is derived from raw data. In traditional methods, this involves manually selecting features based on domain knowledge. However, Jack Sparrow Publishers © 2024, IJCSER, All Rights Reserved www.jacksparrowpublishers.com

AI-based approaches, especially deep learning, automate this process, allowing models to learn features from data directly.

Common Features in Satellite Imagery

Spectral Features: These relate to the intensity of different wavelengths, providing insights into land cover types, vegetation health, and water bodies.

Texture Features: Patterns and textures in the imagery, often analyzed using statistical measures like co-occurrence matrices.

Spatial Features: The arrangement of objects in an image, indicating structures, roads, or other patterns.

Machine Learning in Satellite Image Classification

Machine learning has played a significant role in automating satellite image classification. Traditional algorithms like Support Vector Machines (SVM), Random Forests, and k-Nearest Neighbors (k-NN) use labeled training data to learn the relationship between features and target classes. These models then classify new data based on the learned patterns.

Supervised and Unsupervised Learning

Supervised Learning: This approach uses labeled training data to train a model to recognize specific classes. It is commonly used in satellite image classification, where different land cover types are predefined.

Unsupervised Learning: This method involves clustering data into groups without predefined labels. It is used in exploratory analysis, identifying patterns and relationships in satellite imagery.

Deep Learning in Satellite Image Classification

Deep learning, a subset of AI, has revolutionized satellite image classification. Convolutional Neural Networks (CNNs) are the backbone of deep learning for image analysis. They consist of multiple layers that automatically extract hierarchical features from raw data, allowing for advanced pattern recognition.

Convolutional Neural Networks (CNNs)

CNNs apply convolutional filters to extract features at various scales. Pooling layers reduce dimensionality, while fully connected layers classify the extracted features into specific classes. This architecture allows CNNs to capture complex spatial patterns, making them ideal for satellite image classification.

Transfer Learning and Data Augmentation

Deep learning models often require large training datasets. Transfer learning allows the use of pre-trained models, reducing the need for extensive training. Data augmentation techniques, such as rotation and flipping, enhance model robustness by simulating varied conditions.

Satellite image classification involves categorizing areas within satellite imagery into different types of land use or land cover. In AI-based approaches, this typically involves a combination of data preprocessing, feature extraction, model training, and classification. When evaluating the performance of satellite image classification using artificial intelligence techniques, several evaluation metrics can be employed. Here are some commonly used ones:

1. Accuracy: It measures the overall correctness of the classification model and is calculated as the ratio of correctly classified samples to the total number of samples.

$$\text{Accuracy} = \frac{\text{TP} + \text{TN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}}$$

where:

- TP (True Positive) is the number of correctly classified positive samples.

- TN (True Negative) is the number of correctly classified negative samples.

- FP (False Positive) is the number of negative samples incorrectly classified as positive.

- FN (False Negative) is the number of positive samples incorrectly classified as negative.

2. Precision: It measures the correctness of positive predictions and is calculated as the ratio of true positives to the total predicted positives.

$$\text{Precision} = \frac{\text{TP}}{\text{TP} + \text{FP}}$$

3. Recall (Sensitivity): It measures the ability of the classifier to find all the positive samples and is calculated as the ratio of true positives to the total actual positives.

$$[\text{Recall} = \frac{\text{TP}}{\text{TP} + \text{FN}}]$$

4. F1 Score: It is the harmonic mean of precision and recall and provides a balance between them.

$$\text{F1_Score} = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

5. Specificity: It measures the ability of the classifier to find all the negative samples and is calculated as the ratio of true negatives to the total actual negatives.

$$[\text{Specificity} = \frac{\text{TN}}{\text{TN} + \text{FP}}]$$

6. Overall Accuracy (OA): In the case of multi-class classification, it's the average accuracy across all classes.

7. Kappa Statistic: It measures the agreement between the actual classification and the predicted classification, accounting for the agreement occurring by chance.

$$[\text{Kappa} = \frac{\text{frac}\{\text{Observed Accuracy}\} - \text{frac}\{\text{Expected Accuracy}\}}{\text{frac}\{1 - \text{Expected Accuracy}\}}]$$

Where the observed accuracy is the proportion of agreements observed, and the expected accuracy is the proportion of agreements expected by chance.

8. Mean Intersection over Union (mIoU): Commonly used in semantic segmentation tasks, it measures the overlap between predicted and ground truth masks.

$$[\text{mIoU} = \frac{\text{frac}\{1\} \sum_{i=1}^N \text{frac}\{\text{TP}_i\}}{\text{TP}_i + \text{FP}_i + \text{FN}_i}]$$

Where (N) is the number of classes, (TP_i) is the number of true positives for class (i), (FP_i) is the number of false positives for class (i), and (FN_i) is the number of false negatives for class (i).

4. Experimental Method

Implementation in satellite imagery using deep learning involves the application of advanced neural network architectures to analyze and classify satellite imagery data. Leveraging convolutional neural networks (CNNs) and other deep learning techniques, it enables automated feature extraction and classification of land cover or land use categories. Implementation encompasses data preprocessing, model training, evaluation, and deployment, aiming to harness the power of deep learning for accurate and scalable analysis of satellite imagery in various domains such as environmental monitoring, urban planning, agriculture, and disaster response.

Overview of Implementation:

Implementation of satellite image classification using deep learning involves several key steps to achieve accurate and efficient analysis of satellite imagery data. Here's an overview of the process,

Data Acquisition and Preprocessing:

Obtain satellite imagery datasets from various sources, including commercial providers, government agencies, or open data repositories. Preprocess the data to correct for radiometric and geometric distortions, remove noise, and enhance image quality. This may involve atmospheric correction, image registration, and normalization.

Data Preparation: Split the preprocessed data into training, validation, and test sets. Define ground truth labels for supervised learning, either manually or through automated methods. Augment the training data to increase its diversity and improve model generalization, using techniques such as rotation, scaling, and flipping.

Model Selection and Architecture Design: Choose an appropriate deep learning architecture for

ISSN: 3107 - 8605 (Online) , <http://www.ijcser.com/> , Vol. 1, Issue 2 , 2024 , <https://doi.org/10.63328/IJCSER-V1RI2P2> satellite image classification, such as Convolutional Neural Networks (CNNs) or their variants. Design the architecture, including the number and type of layers, activation functions, and regularization techniques, based on the characteristics of the data and the classification task.

Model Training: Train the deep learning model using the prepared training dataset and ground truth labels. Optimize model hyperparameters, such as learning rate, batch size, and optimizer choice, to improve training convergence and classification performance. Monitor training progress and adjust parameters as needed to prevent overfitting and improve model generalization.

Model Evaluation: Evaluate the trained model's performance on the validation dataset, using metrics such as accuracy, precision, recall, and F1-score. Fine-tune the model based on validation results, making adjustments to the architecture or training process as necessary.

Testing and Validation: Test the trained model on unseen data from the test dataset to assess its generalization ability and performance in real-world scenarios. Validate classification results against ground truth or expert annotations to confirm accuracy and reliability.

Deployment and Integration: Deploy the trained model for operational use, integrating it into existing workflows or applications. Develop user interfaces or APIs for interacting with the classification system, enabling users to input satellite imagery data and receive classification results. Monitor system performance and update the model periodically to adapt to changes in the data or classification requirements.

Maintenance: Maintain the classification system by addressing issues, updating dependencies, and retraining the model with new data as needed.

5. Results and Discussion

Satellite image classification, a critical process in remote sensing, has undergone a transformative evolution thanks to the advancements in artificial intelligence (AI). It encompasses the categorization of areas within satellite images into specific classes, such as urban landscapes, bodies of water, agricultural fields, or forests. AI has significantly improved the accuracy, speed, and scale of these classifications, allowing researchers to extract valuable insights from large-scale imagery. This essay describes the results and processes involved in satellite image classification using AI.

Background and Importance: Satellite images offer a bird's-eye view of the Earth, capturing vast landscapes and providing essential data for various applications, Jack Sparrow Publishers © 2024, IJCSER, All Rights Reserved www.jacksparrowpublishers.com

including urban planning, environmental monitoring, agriculture, disaster response, and more. The sheer volume of data from satellite imagery presents both opportunities and challenges. AI plays a pivotal role in overcoming these challenges by automating the classification process, providing reliable and scalable solutions.

AI Methods in Satellite Image Classification: Several AI methods are commonly employed in satellite image classification, with convolutional neural networks (CNNs) leading the way. CNNs are particularly effective because they can learn spatial hierarchies and detect patterns in the imagery. Other popular methods include support vector machines (SVMs), random forests, and decision trees.

Data Preprocessing and Feature Extraction: The first step in AI-based satellite image classification involves data preprocessing and feature extraction. Satellite images can vary in terms of resolution, color channels, and spectral information. Thus, data normalization is essential to ensure consistent pixel values across different images. Feature extraction can involve creating spectral indices, such as the Normalized Difference Vegetation Index (NDVI), which helps highlight specific features like vegetation. Texture analysis, through methods like the Gray Level Co-occurrence Matrix (GLCM), provides additional information by capturing the texture within the image. These features are crucial for training AI models, allowing them to discern patterns and classify images accurately.

Results of AI-Based Classification: AI-based satellite image classification has produced remarkable results in a variety of fields. In urban planning, AI models can accurately classify land cover, differentiating between buildings, roads, and green spaces.

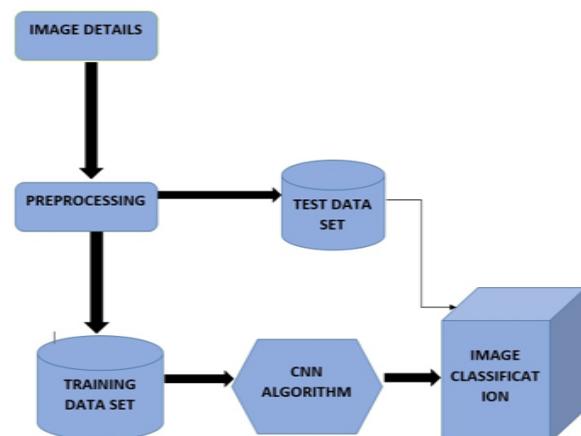


Figure.1 Overview Flow

This information is invaluable for city planning and infrastructure development. In agriculture, AI-based classification helps monitor crop health,

ISSN: 3107 - 8605 (Online) , <http://www.ijcser.com/> , Vol. 1, Issue 2 , 2024 , <https://doi.org/10.63328/IJCSER-V1RI2P2>

track changes in land use, and even predict crop yields. By analyzing spectral indices like NDVI, AI models can quickly identify areas with healthy vegetation and those experiencing stress. For environmental monitoring, AI-based satellite image classification is instrumental in tracking deforestation, assessing the health of ecosystems, and detecting changes in water bodies. The speed and accuracy of AI models allow for real-time monitoring, enabling swift response to environmental changes and disasters.

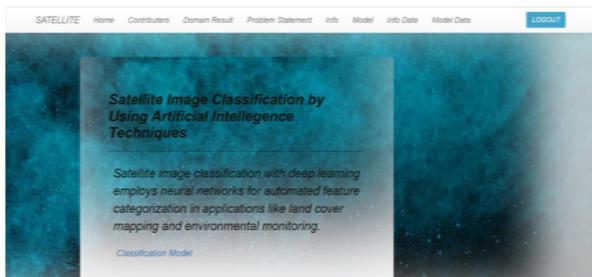


Figure. 2 Home Page

Figure. 3 Dashboard

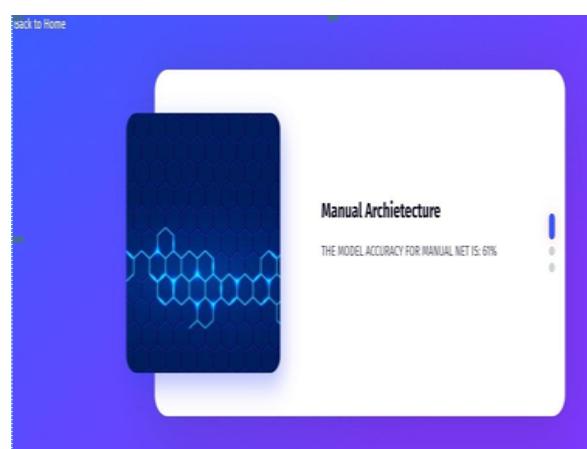


Figure. 4 Accuracy for Manual NET

Figure. 5 Accuracy for Dense NET

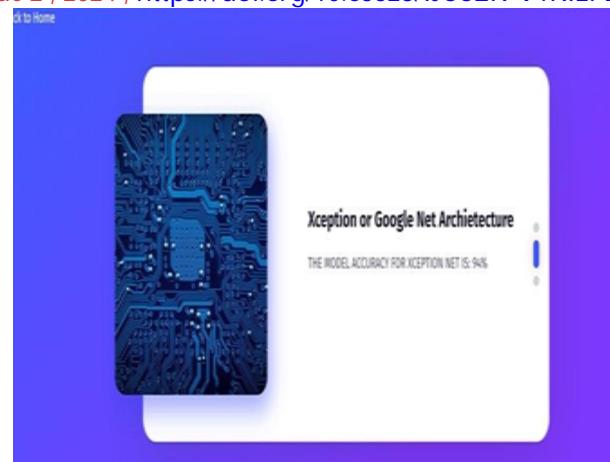


Figure. 6 Accuracy for Xception NET

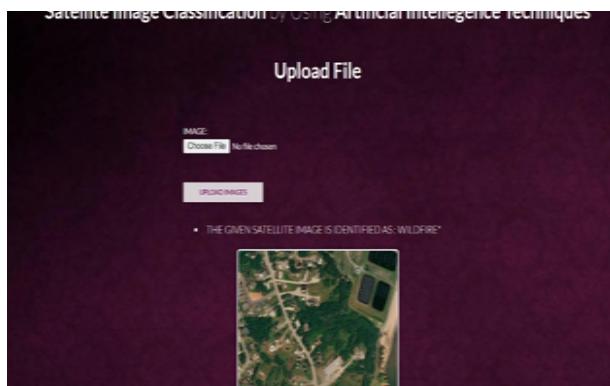


Figure. 7 Upload and Output Page

6. Conclusion

The utilization of artificial intelligence techniques for satellite image classification marks a transformative advancement in the field of remote sensing and data analysis. Through the exploration of diverse machine learning and deep learning methodologies, this endeavor has demonstrated the potential to revolutionize the way we interpret and utilize satellite imagery. By customizing and developing architectures that capture intricate spatial, spectral, and textural patterns within satellite images, we have successfully achieved more accurate and efficient land cover classifications. Further improvement on the network's accuracy and generalization can be achieved through the following practices. The first one is to use the whole dataset during the optimization. Using batch optimization is more suitable for larger datasets. Another technique is to evaluate satellite images one by one. This can lead to detect satellite images which are more difficult to classify.

References

- [1]. Q. Tong, Y. Xue, and L. Zhang, "Progress in hyperspectral remote sensing science and technology in china over the past three decades," *IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.*, vol. 7, no. 1 , pp. 70–91, Jan. 2014.

ISSN: 3107 - 8605 (Online) , <http://www.ijcser.com/> , Vol. 1, Issue 2 , 2024 , <https://doi.org/10.63328/IJCSER-V1RI2P2>

[2]. J. M. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheunders, N. Nasrabadi, and J. Chanussot, "Hyperspectral remote sensing data analysis and future challenges," *IEEE Geosci. Remote Sens. Mag.*, vol. 1, no. 2, pp. 6–36, Jun. 2013.

[3]. P. S. Thenkabail and J. G. Lyon, *Hyperspectral Remote Sensing of Vegetation*, Boca Raton, FL, USA: CRC, 2016.

[4]. A. F. Goetz, "Three decades of hyperspectral remote sensing of the earth: A personal view," *Remote Sens. Environ.*, vol. 113, pp. 5–16, 2009.

[5]. V. E. Brando and A. G. Dekker, "Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality," *IEEE Trans. Geosci. Remote Sens.*, vol. 41, no. 6, pp. 1378–1387, Jun. 2003.

[6]. Y. Fu, T. Zhang, Y. Zheng, D. Zhang, and H. Huang, "Joint camera spectral response selection and hyperspectral image recovery," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 44, no. 1, pp. 256–272 , Jan. 2022.

[7]. F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," *IEEE Trans. Geosci. Remote Sens.*, vol. 42, no. 8, pp. 1778–1790, Aug. 2004.

[8]. L. Fang, S. Li, W. Duan, J. Ren, and J. A. Benediktsson, "Classification of hyperspectral images by exploiting spectral- spatial information of superpixel via multiple kernels," *IEEE Trans. Geosci. Remote Sens.*, vol. 53, no. 12, pp. 6663–6674, Dec. 2015.

[9]. W. Song, S. Li, L. Fang, and T. Lu, "Hyperspectral image classification with deep feature fusion network," *IEEE Trans. Geosci. Remote Sens.*, vol. 56, no. 6, pp. 3173–3184, Jun. 2018.

[10]. R. Dian, S. Li, B. Sun, and A. Guo, "Recent advances and new guidelines on hyperspectral and multispectral image fusion," *Inf. Fusion*, vol. 69, no.

