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Abstract: Satellite imagery plays a vital role in various fields, including agriculture, urban planning, disaster
management, and environmental monitoring. Efficient and accurate classification of satellite images is essential for
extracting valuable information and making informed decisions. In this study, we propose the use of artificial intelligence
techniques for satellite image classification. A comprehensive dataset of labelled satellite images is collected, representing
different land cover types or objects of interest. The dataset is pre-processed to enhance the image quality, remove noise,
and normalize the data. Data augmentation techniques such as rotation, scaling, and flipping are applied to increase the
dataset size and improve the model's generalization ability. Future research directions may include exploring advanced
deep learning architectures, such as attention mechanisms or graph neural networks, to further improve the classification
performance. Additionally, the integration of multi-sensor satellite data and temporal analysis can enhance the

capabilities of the classification models for dynamic monitoring and change detection applications.
Keywords: Satellite Imagery, Al, Image Classification, CNN, DL, Transfer Learning, Data Augmentation.

1. Introduction

Deep learning is a powerful subset of machine learning,
widely applied to satellite image analysis. Satellites
orbiting Earth capture valuable data about our planet's
surface. Convolutional Neural Networks (CNNs) are
crucial for processing satellite images. Applications include
land use classification, change detection, object
identification, and disaster management. Challenges
include data quality and model complexity. Ethical and
privacy concerns can arise in high-resolution imagery.
Future directions involve explainable Al and integration
with other data sources. Deep learning enhances our ability
to monitor Earth's changes and make informed decisions
for various sectors. Its continued evolution promises even
greater insights from satellite imagery.

Satellite image classification using deep learning has
emerged as a revolutionary approach to analyzing and
interpreting satellite data. Deep learning, a branch of
artificial intelligence (Al), relies on neural networks to
identify complex patterns in data, making it a powerful
tool for extracting meaningful information from satellite
imagery. This approach has gained traction due to its
ability to process large volumes of data with high accuracy
and efficiency.

Traditional methods of satellite image classification often
required extensive manual effort and were prone to human
error. Deep learning transforms this process by automating
classification tasks, reducing human intervention, and
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enhancing consistency. Convolutional Neural Networks
(CNINs), a key technology in deep learning, excel at
recognizing visual patterns and features, enabling detailed
analysis of satellite images.

The applications of deep learning in satellite image
classification are vast and varied. From urban planning
and environmental monitoring to disaster response and
agriculture, deep learning enables rapid, scalable, and
accurate analyses. Its ability to process multi-spectral and
hyperspectral data adds further depth to the insights that
can be derived.

As a result, deep learning-based satellite image
classification is becoming indispensable in various fields,
driving advancements in research, industry, and
environmental management. The convergence of satellite
technology and deep learning promises a future where
insights from space lead to better decision-making on
Earth.

Atrtificial Intelligence (Al) has had a profound impact on
satellite image classification, revolutionizing how we
analyze and interpret vast amounts of satellite data. Here
are some of the key impacts:

Improved Accuracy: Al, particularly deep learning and
machine learning models, has significantly improved the
accuracy of satellite image classification. Neural networks,
such as Convolutional Neural Networks (CNNs), are
exceptionally good at detecting patterns and features in
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images, leading to more accurate classification of satellite
imagery.

Automation and Efficiency: Al automates the process of
satellite image classification, reducing the need for manual
analysis. This increases efficiency and allows for processing
large volumes of data quickly, which is crucial for
monitoring large areas or frequent satellite updates.

High-Resolution Analysis: Al-based models can analyze
high-resolution satellite images, enabling detailed
classification of various features like buildings, vegetation,
water bodies, and more. This capability is beneficial for
urban planning, environmental monitoring, and disaster
response.

Multi-Spectral and Hyperspectral Analysis: Al can handle
multi-spectral and hyperspectral data, allowing for more
comprehensive analysis. This capability helps identify
specific materials, track environmental changes, and detect
subtle variations in land cover.

Scalability and Big Data: Al facilitates scalable analysis,
allowing organizations to process and classify satellite
imagery at scale. This scalability is essential for projects
involving global monitoring or extensive satellite
constellations.

Real-Time Monitoring: Al's automation and speed enable
near real-time monitoring using satellite imagery. This is
critical for applications like disaster response, where timely
information can save lives and resources.

Reduction in Human Error: By automating satellite image
classification, Al reduces the risk of human error, leading
to more consistent and reliable results.

Enhanced Data Integration: Al can integrate satellite
imagery with other data sources, such as Geographic
Information Systems (GIS), sensor data, and social media,
providing a more holistic view of the environment or
specific events.

Cost-Effectiveness: Automation and improved accuracy
lead to cost savings in satellite image analysis, making it
more accessible for various applications.

Deep learning, a subset of artificial intelligence (Al), has
had a transformative impact on satellite image
classification. It allows for more advanced, efficient, and
accurate analysis of satellite imagery, influencing a wide
range of applications from wurban planning to
environmental monitoring. Here are the key impacts of
deep learning in satellite image classification:

High Accuracy and Precision: Deep learning models,
especially Convolutional Neural Networks (CNNs), can
identify complex patterns and features in satellite images
with high precision. This has led to improved accuracy in
identifying land cover, objects, and other features.
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Automation and Scalability: Deep learning automates the
classification process, enabling large-scale processing of
satellite imagery. This scalability is crucial for applications
requiring global or repeated analyses, like climate
monitoring and disaster response.

Handling Diverse Data Sources: Deep learning can process
a variety of data types, including multispectral and
hyperspectral imagery. This versatility allows for more
comprehensive analyses, like distinguishing different types
of vegetation, detecting water quality, and identifying
specific materials.

Reduction in Manual Labor and Human Error: By
automating tasks, deep learning reduces the need for
manual analysis, minimizing human error and improving
consistency. This enhances the reliability of results and
Speeds up processing.

Real-Time Monitoring and Response: Deep learning's
efficiency allows for near real-time analysis, which is
critical in time-sensitive scenarios like disaster response,
deforestation monitoring, or urban traffic analysis.

Feature Detection and Object Recognition: Deep learning
models are adept at object recognition and feature
detection. This capability is vital for identifying
infrastructure, vehicles, buildings, agricultural fields, and
more within satellite images.

Improved Analysis of Complex Scenarios: Deep learning
excels at understanding complex relationships within data.
This is useful for more advanced analyses, such as tracking
urban growth, assessing environmental impacts, and
monitoring agricultural health.

Cross-Disciplinary Applications: The impact of deep
learning in satellite image classification extends to various
fields, such as agriculture, environmental science, urban
planning, transportation, national security, and climate
studies.

Cost-Effectiveness and Resource Optimization: The
automation and accuracy provided by deep learning lead
to cost savings in satellite image analysis. It allows for
better resource allocation and reduces the time needed for
manual analysis.

Integration with Other Al Techniques: Deep learning can
be integrated with other Al techniques, like reinforcement
learning or generative models, to create more
comprehensive solutions. This enhances the potential
applications and effectiveness of satellite image
classification.

2. Literature Survey

As the number of satellite networks increases, the radio
spectrum is becoming more congested, prompting the
need to explore higher frequencies. However, it is more
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difficult to operate at higher frequencies due to severe
impairments caused by varying atmospheric conditions.
Hence, radio channel forecasting is crucial for operators to
adjust and maintain the link’s quality. This paper presents
a practical approach for Q/V-band modeling for low Earth
orbit satellite channels based on tools from machine
learning and statistical modeling [1].

The developed Q/V-band LEO satellite channel model is
composed of:

o forecasting method using model-based deep
learning, intended for real-time operation of
satellite terminals; and

e statistical channel simulator that generates a time-
series path-loss random process, intended for
system design and research.

Both approaches capitalize on real-measurements
obtained from AlphaSat’'s Q/V-band transmitter at
different geographic latitudes. The results show that
model-based deep learning can outperform simple
statistical and deep learning methods by at least 50%.
Moreover, the model is capable of incorporating varying
rain and elevation angle profiles.[1]

With the expansion of satellite constellation, routing
techniques for small-scale satellite networks have
problems in routing overhead and forwarding efficiency.
This paper proposes a vector segment routing method for
large-scale multi-layer satellite networks. A vector
forwarding path is built based on the location between the
source and the destination. Data packets are forwarded
along this vector path, shielding the influence of satellite
motion on routing forwarding. Then, a dynamic route
maintenance strategy is suggested [2].

In a multi-layer satellite network, the low-orbit satellites
are in charge of computing the routing tables for one area,
and the routing paths are dynamically adjusted in the area
in accordance with the network. The medium-orbit
satellites maintain the connectivity of vector paths in
multiple segmented areas. The forwarding mode based on
the source and destination location improves the
forwarding efficiency, and the segmented route
maintenance mode decreases the routing overhead.

The simulation results indicate that vector segment
routing has significant performance advantages in end-to-
end delay, packet loss rate, and throughput in a multi-
layer satellite network. We also simulate the impact of
routing table update mechanism on network performance
and overhead and give the performance of segmented
vector routing in multi layer low-orbit satellite networks.
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A literature survey on the utilization of Low Earth Orbit
(LEO) satellite channels for satellite image classification
through Artificial Intelligence (Al) techniques reveals a
dynamic landscape of research and innovation. LEO
satellites, orbiting at relatively low altitudes, offer a wealth
of spectral information captured across various
wavelengths, including visible, near-infrared, shortwave
infrared, and thermal infrared bands. These satellites play
a pivotal role in acquiring high-resolution imagery of the
Earth's surface, facilitating applications in environmental
monitoring, disaster management, urban planning, and
agriculture. Traditional methods of satellite image
classification often relied on manual feature extraction and
simplistic classification algorithms, leading to limitations
in accuracy and scalability. However, the emergence of Al
techniques, particularly deep learning algorithms such as
Convolutional ~ Neural  Networks  (CNNs), has
revolutionized the field by enabling automatic feature
extraction and classification directly from raw satellite
imagery.

Recent studies have demonstrated the efficacy of Al-based
approaches in satellite image classification tasks using
LEO satellite channels. For instance, Zhang et al. (2020)
proposed a novel deep learning framework that integrates
spectral and spatial information from multispectral images
captured by LEO satellites. Their model achieved state-of-
the-art performance in land cover classification by
leveraging the rich spectral signatures inherent in satellite
imagery. Similarly, advancements in transfer learning
techniques have allowed researchers to adapt pre-trained
CNN models to satellite image classification tasks, even
with limited labeled training data. This approach has been
particularly beneficial in scenarios where collecting
extensive ground truth data is challenging or impractical.

Despite the progress made in Al-based satellite image
classification, several challenges persist. One significant
challenge is the scarcity of labeled training data, especially
for specialized land cover classes or regions with limited
ground truth information. Additionally, atmospheric
conditions, sensor noise, and geometric distortions can
introduce uncertainties into satellite imagery, posing
challenges for accurate classification. Addressing these
challenges requires innovative solutions, including data
augmentation techniques, domain adaptation strategies,
and the development of robust Al models capable of
handling noisy and imperfect satellite data.

Looking ahead, the future of satellite image classification
lies in the seamless integration of Al techniques with
emerging technologies such as unmanned aerial vehicles
(UAVs) and high-resolution satellite constellations. By
combining data from multiple sources, researchers can
enhance the temporal and spatial resolution of satellite

imagery, enabling more precise and
Lol

8


http://www.ijcser.com/
https://doi.org/10.63328/IJCSER-V1RI2P2
http://www.jacksparrowpublishers.com

International Journal of Computational Science and Engineering Sciences

K. Lakshmaiah et, al.

ISSN: 3107 - 8605 (Online) , http://www.ijcser.com/, Vol. 1, Issue 2, 2024 , https://doi.org/10.63328/1JCSER-V1RI2P2

timely classification of dynamic  environmental
phenomena. Furthermore, advancements in real-time
processing and analysis capabilities will unlock new
opportunities for applications in disaster response,
environmental monitoring, and precision agriculture.
Overall, the synergy between LEO satellite channels and
Al techniques holds immense promise for advancing our
understanding of the Earth's surface and addressing
complex challenges facing our planet.

3. Theory of Calculator

Satellite image classification is a foundational task in
remote sensing, providing insights into land cover,
vegetation, urban development, and other significant
features from a high wvantage point. Traditional
approaches relied on manual interpretation or simple
algorithms, but artificial intelligence (Al) has introduced
more advanced and automated methods. This
comprehensive theory discusses the principles behind
satellite image classification using Al, emphasizing
machine learning and deep learning techniques, data
preprocessing, feature  extraction, and model
development.

Fundamentals of Satellite Imagery

Satellite imagery encompasses a variety of data collected
from space-based sensors. The data is captured in several

forms, including optical (visible light), multispectral
(multiple bands), hyperspectral (many narrow bands), and
radar (radio waves). Each type provides unique

information about the Earth's surface and is used in
different applications.

Data Preprocessing

Before satellite imagery can be classified, it typically
undergoes preprocessing. This step ensures data quality
and consistency, allowing for accurate analysis. Key
preprocessing steps include:

Radiometric Calibration: Adjusting pixel values to correct
sensor-related inconsistencies and atmospheric effects.
Geometric Correction: Aligning images with geographic
coordinates to ensure spatial accuracy.

Noise Reduction: Removing unwanted artifacts and
smoothing the data to improve signal quality.

Feature Extraction and Representation

Feature extraction is a critical step in satellite image
classification, where relevant information is derived from
raw data. In traditional methods, this involves manually
selecting features based on domain knowledge. However,
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Al-based approaches, especially deep learning, automate
this process, allowing models to learn features from data
directly.

Common Features in Satellite Imagery

Spectral Features: These relate to the intensity of different
wavelengths, providing insights into land cover types,
vegetation health, and water bodies.

Texture Features: Patterns and textures in the imagery,
often analyzed using statistical measures like co-
occurrence matrices.

Spatial Features: The arrangement of objects in an image,
indicating structures, roads, or other patterns.

Machine Learning in Satellite Image Classification

Machine learning has played a significant role in
automating satellite image classification. Traditional
algorithms like Support Vector Machines (SVM), Random
Forests, and k-Nearest Neighbors (k-NN) use labeled
training data to learn the relationship between features
and target classes. These models then classify new data
based on the learned patterns.

Supervised and Unsupervised Learning

Supervised Learning: This approach uses labeled training
data to train a model to recognize specific classes. It is
commonly used in satellite image classification, where
different land cover types are predefined.

Unsupervised Learning: This method involves clustering
data into groups without predefined labels. It is used in
exploratory  analysis, identifying  patterns and
relationships in satellite imagery.

Deep Learning in Satellite Image Classification

Deep learning, a subset of Al, has revolutionized satellite
image classification. Convolutional Neural Networks
(CNNs) are the backbone of deep learning for image
analysis. They consist of multiple layers that automatically
extract hierarchical features from raw data, allowing for
advanced pattern recognition.

Convolutional Neural Networks (CNNSs)

CNNs apply convolutional filters to extract features at
various scales. Pooling layers reduce dimensionality,
while fully connected layers classify the extracted features
into specific classes. This architecture allows CNNs to
capture complex spatial patterns, making them ideal for

satellite image classification.
@OR0O
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Transfer Learning and Data Augmentation

Deep learning models often require large training
datasets. Transfer learning allows the use of pre-trained
models, reducing the need for extensive training. Data
augmentation techniques, such as rotation and flipping,
enhance model robustness by simulating varied
conditions.

Satellite image classification involves categorizing areas
within satellite imagery into different types of land use or
land cover. In Al-based approaches, this typically involves
a combination of data preprocessing, feature extraction,
model training, and classification. When evaluating the
performance of satellite image classification using artificial
intelligence techniques, several evaluation metrics can be
employed. Here are some commonly used ones:

1.Accuracy: It measures the overall correctness of the
classification model and is calculated as the ratio of
correctly classified samples to the total number of
samples.

Accuracy = frac{TP + TN}{TP + TN + FP + FN} ]

where:

-TP (True Positive) is the number of correctly classified
positive samples.

- TN (True Negative) is the number of correctly
classified negative samples.

- FP (False Positive) is the number of negative samples
incorrectly classified as positive.

- FN (False Negative) is the number of positive samples
incorrectly classified as negative.

2. Precision: It measures the correctness of positive
predictions and is calculated as the ratio of true positives
to the total predicted positives.

Precision = frac{TPKTP + FP}

3. Recall (Sensitivity): It measures the ability of the
classifier to find all the positive samples and is calculated
as the ratio of true positives to the total actual positives.

[ Recall = frac{TPKTP + FN} ]

4. F1 Score: It is the harmonic mean of precision and recall
and provides a balance between them.

F1_Score = frac{2 times Precision 2 times Recall{Precision
+ Recall} ]

5. Specificity: It measures the ability of the classifier to
find all the negative samples and is calculated as the ratio
of true negatives to the total actual negatives.

[ Specificity = frac{TNKTN + FP} ]
6. Overall Accuracy (OA): In the case of multi-class
classification, it's the average accuracy across all classes.
7. Kappa Statistic: It measures the agreement between the
actual classification and the predicted classification,
accounting for the agreement occurring by chance.
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[ Kappa = frac{{\text{Observed Accuracy}} -
{text{Expected Accuracy}}H{{1 - text{Expected Accuracy}}} ]

Where the observed accuracy is the proportion of
agreements observed, and the expected accuracy is the
proportion of agreements expected by chance.

8. Mean Intersection over Union (mloU): Commonly
used in semantic segmentation tasks, it measures the
overlap between predicted and ground truth masks.

[ mloU = frac{1{N}sum_{i=1}{N} frac{TP_i{TP_i + FP_i +
FN_i}]

Where (N ) is the number of classes, ( TP_i ) is the number
of true positives for class (i ),( FP_i) is the number of false
positives for class (i ), and( FN_i ) is the number of false
negatives for class (i ).

4. Experimental Method

Implementation in satellite imagery using deep learning
involves the application of advanced neural network
architectures to analyze and classify satellite imagery data.
Leveraging convolutional neural networks (CNNs) and
other deep learning techniques, it enables automated
feature extraction and classification of land cover or land
use categories. Implementation encompasses data
preprocessing, model training, evaluation, and
deployment, aiming to harness the power of deep learning
for accurate and scalable analysis of satellite imagery in
various domains such as environmental monitoring, urban
planning, agriculture, and disaster response.

Overview of Implementation:

Implementation of satellite image classification using deep
learning involves several key steps to achieve accurate and
efficient analysis of satellite imagery data. Here's an
overview of the process,

Data Acquisition and Preprocessing:

Obtain satellite imagery datasets from various sources,
including commercial providers, government agencies, or
open data repositories. Preprocess the data to correct for
radiometric and geometric distortions, remove noise, and
enhance image quality. This may involve atmospheric
correction, image registration, and normalization.

Data Preparation: Split the preprocessed data into
training, validation, and test sets. Define ground truth
labels for supervised learning, either manually or through
automated methods. Augment the training data to
increase its diversity and improve model generalization,
using techniques such as rotation, scaling, and flipping.

Model Selection and Architecture Design: Choose an

@@@ appropriate deep learning architecture for
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satellite image classification, such as Convolutional Neural
Networks (CNNs) or their variants. Design the
architecture, including the number and type of layers,
activation functions, and regularization techniques, based
on the characteristics of the data and the classification
task.

Model Training: Train the deep learning model using the
prepared training dataset and ground truth Ilabels.
Optimize model hyperparameters, such as learning rate,
batch size, and optimizer choice, to improve training
convergence and classification performance. Monitor
training progress and adjust parameters as needed to
prevent overfitting and improve model generalization.
Model Evaluation: Evaluate the trained model's
performance on the validation dataset, using metrics such
as accuracy, precision, recall, and Fl-score. Fine-tune the
model based on validation results, making adjustments to
the architecture or training process as necessary.

Testing and Validation: Test the trained model on unseen
data from the test dataset to assess its generalization
ability and performance in real-world scenarios. Validate
classification results against ground truth or expert
annotations to confirm accuracy and reliability.

Deployment and Integration: Deploy the trained model
for operational use, integrating it into existing workflows
or applications. Develop user interfaces or APIs for
interacting with the classification system, enabling users to
input satellite imagery data and receive classification
results. Monitor system performance and update the
model periodically to adapt to changes in the data or
classification requirements.

Maintenance: Maintain the classification system by
addressing issues, updating dependencies, and retraining
the model with new data as needed.

5. Results and Discussion

Satellite image classification, a critical process in remote
sensing, has undergone a transformative evolution thanks
to the advancements in artificial intelligence (Al). It
encompasses the categorization of areas within satellite
images into specific classes, such as urban landscapes,
bodies of water, agricultural fields, or forests. Al has
significantly improved the accuracy, speed, and scale of
these classifications, allowing researchers to extract
valuable insights from large-scale imagery. This essay
describes the results and processes involved in satellite
image classification using Al.

Background and Importance: Satellite images offer a
bird’s-eye view of the Earth, capturing vast landscapes
and providing essential data for various applications,
Jack Sparrow Publishers © 2024, IJCSER, All Rights Reserved
www.jacksparrowpublishers.com

including urban planning, environmental monitoring,
agriculture, disaster response, and more. The sheer
volume of data from satellite imagery presents both
opportunities and challenges. Al plays a pivotal role in
overcoming these challenges by automating the
classification process, providing reliable and scalable
solutions.

Al Methods in Satellite Image Classification: Several Al
methods are commonly employed in satellite image
classification, with convolutional neural networks (CNNSs)
leading the way. CNNSs are particularly effective because
they can learn spatial hierarchies and detect patterns in the
imagery. Other popular methods include support vector
machines (SVMs), random forests, and decision trees.

Data Preprocessing and Feature Extraction: The first step
in Al-based satellite image classification involves data
preprocessing and feature extraction. Satellite images can
vary in terms of resolution, color channels, and spectral
information. Thus, data normalization is essential to
ensure consistent pixel values across different images.
Feature extraction can involve creating spectral indices,
such as the Normalized Difference Vegetation Index
(NDVI), which helps highlight specific features like
vegetation. Texture analysis, through methods like the
Gray Level Co-occurrence Matrix (GLCM), provides
additional information by capturing the texture within the
image. These features are crucial for training Al models,
allowing them to discern patterns and classify images
accurately.

Results of Al-Based Classification: Al-based satellite image
classification has produced remarkable results in a variety
of fields. In urban planning, Al models can accurately
classify land cover, differentiating between buildings,
roads, and green spaces.

IMAGE DETAILS

——
PREPROCESSING TEST DATA
SET
e
L.
\i_’/ IMAGE
CNN m—) CLASSIFICAT
TRAINING b oRiTHM T
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Figure.1 Overview Flow

This information is invaluable for city planning and
infrastructure development. In agriculture, Al-based

@@@@ classification helps monitor crop health,
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track changes in land use, and even predict crop yields. By
analyzing spectral indices like NDVI, Al models can
quickly identify areas with healthy vegetation and those
experiencing stress. For environmental monitoring, Al-
based satellite image classification is instrumental in
tracking deforestation, assessing the health of ecosystems,
and detecting changes in water bodies. The speed and
accuracy of Al models allow for real-time monitoring,
enabling swift response to environmental changes and

disasters.

Figure. 2 Home Page

Satellite Image Classification
by using Artificial Intellegence

Figure. 3 Dashboard

Manual Archietecture

Figure. 4 Accuracy for Manual NET

Figure. 5 Accuracy for Dense NET
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Figure. 6 Accuracy for Xception NET

Upload File

Figure. 7 Upload and Output Page

6. Conclusion

The utilization of artificial intelligence techniques for
satellite image classification marks a transformative
advancement in the field of remote sensing and data
analysis. Through the exploration of diverse machine
learning and deep learning methodologies, this endeavor
has demonstrated the potential to revolutionize the way
we interpret and utilize satellite imagery. By customizing
and developing architectures that capture intricate spatial,
spectral, and textural patterns within satellite images, we
have successfully achieved more accurate and efficient
land cover classifications. Further improvement on the
network’s accuracy and generalization can be achieved
through the following practices. The first one is to use the
whole dataset during the optimization. Using batch
optimization is more suitable for larger datasets. Another
technique is to evaluate satellite images one by one. This
can lead to detect satellite images which are more difficult
to classify.
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