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Abstract: Reproducing machine learning results across teams and hardware often fails due to hidden randomness,
drifting datasets, and unstable environments that alter metrics without visible changes to code or intent. ReproQuorum
virtualizes randomness with scoped, counter-based generators, derives hash-locked master seeds from commit, dataset
fingerprints, and canonicalized configuration, emits signed JSON-LD provenance receipts, and packages a Nix-pinned
OCI capsule for deterministic re-execution. Repository continuous integration targets a benchmark quorum of > 2 public
datasets per task; the reported experiments enforce > 1 dataset per task. Across named entity recognition (WNUT 2017)
and extractive question answering (SQUAD v1.1), replication attains Tier-A on matched architectures (byte-identical) and
Tier-B across CPU—~CUDA (metric-identical with A<10”(-6)). Performance improves by +1.1 F1 on WNUT and +0.7 F1 /
+0.6 EM on SQUAD under equal budgets. Capsules and receipts enable one-command verification and reduce ambiguity
about seeds, data, and environments. Code, data manifests, checkpoints, capsules, and model cards are released with
signed receipts and container digests to support independent validation.
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1. Introduction

scoped counter-based generators; and captures lineage and
outcomes as signed JSON-LD receipts. Portable Repro
Capsules package a Nix-pinned PyTorch environment
inside OCI/Docker images for re-execution, while a
benchmark quorum in CI requires successful replication on
at least two public datasets per task (for named entity
recognition: CoNLL-03 and OntoNotes 5) across CPU and
NVIDIA CUDA profiles. The design aligns with data
lineage and BOM practices [1], operationalizes
multi-benchmark, artifact-centric reproducibility [2,3],
leverages persistent identifiers for durable citation [4], and
adopts principled environment control [5,6], yielding a
single auditable flow from inputs to metrics.
Contributions:

e Scoped, counter-based RNG with stable textual
scopes ensures order-insensitive randomness
across libraries and components.

e Hash-locked seeds derived from code commit,
dataset fingerprint, and canonicalized config bind
results to content.

Machine learning results often fail to reproduce due to
hidden randomness, dataset and environment drift, and
single-benchmark overfitting. Prior work recommends
verifiable credentials for data lineage and software bills of
materials [1], agent benchmarks that test computational
reproducibility [2], consolidated artifacts to capture
missing experiment details [3], persistent identifiers for
algorithms [4], data-centric checklists for reliable
development [5], and functional package managers for
transparent, long-term reproducibility [6]. Despite
progress, end-to-end evidence that binds code, data,
configuration, and environment to exact metrics remains
rare and difficult to validate across heterogeneous
hardware. A practical method is required that hardens
determinism, exposes provenance, and enforces
multi-benchmark reporting under continuous integration.

ReproQuorum provides a signed, scope-deterministic
pipeline that binds randomness to content through
hash-locked seeds derived from code, dataset fingerprints,
and canonicalized configuration; centralizes entropy with
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¢ Signed JSON-LD provenance receipts and portable
Repro Capsules enable auditable, offline-capable
re-execution.

e Benchmark quorum (=2 public datasets per task)
with  replication tiers under CIl enforces
cross-hardware, multi-dataset verification.

2. Related Works

Reproducibility frameworks and artifact evaluation have
advanced toward stronger guarantees on exact reruns and
auditable evidence. Deterministic MLOps stacks enforce
fixed algorithms, seeds, and environments to reduce
variance and drift, exemplified by mlf-core, which
prescribes deterministic backends and containerized
execution, and by Guix-based workflows that lock
user-space and toolchains for long-term replayability
(Heumos [7]; Vallet [6]). Data-centric checklists surface
omissions in preprocessing and labeling, and consolidated
artifacts reduce missing details that block replication
(Seedat [5]; Fostiropoulos [3]). Benchmarks and
meta-evaluations expose deficiencies in current practice
and propose remedies through agent-based reproducibility
tests and benchmark audits (Siegel [2]; Reuel [8]).
Empirical studies in applied venues quantify replication
rates and highlight the need for complete,
machine-actionable artifacts (Olszewski [9]).

A recent synthesis documents the emerging convergence
of signed provenance, scope-deterministic pipelines, and
guorum-style validation, while noting integration gaps
and scalability trade-offs. Deterministic deep learning and
randomness control target bitwise or metric-level
equivalence across runs. Time-travel and ACID data lakes
decouple data order from execution order, while
deterministic libraries disable nondeterministic kernels
and bind execution to recorded seeds (Ormenisan [10];
Heumos [7]). Methods that verify outcomes without
revealing internals complement determinism, including
cryptographic attestations for evaluation that confirm
metrics with succinct proofs (South [11]). Variance-aware
analysis further distinguishes algorithmic gains from noise
by attributing performance spread to sampling,
initialization, and hardware heterogeneity (Bouthillier
[12]). Together, these strands show that seed setting alone
is insufficient; reproducibility requires joint control of
kernels, data versioning, and evaluation protocols.

Dataset governance, versioning, and multi-benchmark
evaluation improve external validity and trust. Verifiable
credentials attach signed lineage to datasets and models,
enabling downstream  scrutiny of sources and
transformations (Barclay [1]). FAIR-aligned provenance
services capture multi-level traces across data preparation,
training, and evaluation with PROV-compliant graphs and
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gueryable metadata (Pina [13]). Benchmark platforms
encourage repeated trials, wvariance reporting, and
standardized experiment descriptors to limit overfitting to
a single dataset or script (Moreau [14]; Kapoor [15]).
Audit-oriented assessments catalog missing code,
ambiguous metrics, and unavailable data, motivating
stronger release policies (Reuel [8]).

Distinctiveness arises from combining scoped RNG with
order-insensitive substreams, signed JSON-LD receipts
covering code, data, and environment, and a Cl-enforced
benchmark quorum that requires agreement on at least
two public datasets per task across CPU and CUDA. This
triad turns reproducibility from a best-effort practice into a
measurable gate and provides portable, citable evidence of
replication quality.

3. Methods and Materials

ReproQuorum establishes a verifiable pipeline from code,
canonicalized configuration, and versioned data to
repeatable outcomes. Code, configuration, and data hashes
define a master seed; VirtRNG provides scoped
substreams; training and evaluation run in PyTorch inside
a Nix-pinned OCI container; signed JSON-LD receipts
capture lineage and outcomes; the release bundles a
portable capsule; the verifier replays the run and validates
signatures, hashes, and metrics. Figure 1 summarizes the
system. Hash-locked seeds, dataset fingerprints, and
canonicalized configurations bind results to content rather
than machine conditions. Repository continuous
integration targets a multi-benchmark quorum of > 2
public datasets per task; the experiments reported enforce
> 1 dataset per task. Re-execution reproduces metrics
across CPU and NVIDIA CUDA hardware.

Signed receipt

Figure 1: System overview of ReproQuorum.

Cl gate

From inputs ¢, d, k to master seed m (Eg. (1)), scoped
subseeds (Eqg. (2)), deterministic training and evaluation
within a Nix-pinned capsule, and a signed JSON-LD
receipt. Notation: ¢ = VCS commit; d = aggregate dataset
fingerprint; k = SHA-256 of canonical configuration; m =
master seed; s = textual RNG scope; A = metric difference.

3.1. Scoped, Counter-Based RNG

A single counter-based random number generator
(VirtRNG) underpins all stochastic behavior across Python,
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NumPy, PyTorch training, dataloader shuffling, and data

augmentation. Stable textual scope names, such as
sampler/train, sampler/val, augment/crop,
augment/color_jitter, and model/init, map to independent
substreams. Scope independence provides

order-insensitivity: refactoring code, inserting or removing
transforms, or changing worker counts does not perturb
other components. Each component requests randomness
solely from the assigned substream, preventing cross-talk
and shielding runs from coupling through call ordering or
iterator length. RNG scope graph and substream isolation.
Textual scopes s (for example, sampler/train,
augment/crop, model/init) map to independent subseeds
via Eq. (2). Edges indicate data or control flow, not entropy
dependence: Eq 1, Eq 2

m = HMAC - SHA256(*"reproguorum", ¢ | d | k) £q 1

subseed(s) = HMAC — SHA256(m, s)mod 2*64 LEq2
In Eq. (1), c is the VCS commit, d is the aggregate dataset
fingerprint, and k is the SHA-256 of the canonicalized
configuration. In Eqg. (2), s is a stable textual scope
identifier. Subseed values initialize framework generators
for CPU and CUDA. In PyTorch, generators are initialized
from the relevant subseeds; manual seeding of torch and
torch.cuda aligns with creation of a DatalLoader generator
passed via the generator parameter. Module initializers,
augmentation  operators, and samplers consume
randomness only through designated substreams, which
keeps sources independent even when data processing
graphs evolve over time.

A dedicated lint and audit stage verifies that all random
draws traverse VIirtRNG, counts draws per scope, and
rejects time-based or default seeds. Generator binding and
scope isolation remove hidden coupling between data
order, augmentation order, and model initialization. The
resulting scheme yields reproducible randomness with
minimal performance overhead and sustained behavior
under code reordering and varying numbers of data loader
workers.

3.2. Hash-Locked Configs and Dataset Fingerprints

Configuration canonicalization ensures a stable, hashable
representation of all hyperparameters and runtime
options. Hierarchical YAML is resolved with Hydra and
OmegaConf, defaults are expanded, types are normalized,
references are materialized, and keys are sorted to produce
a canonical JSON document. The SHA-256 of this
document defines the configuration hash k. Dataset
integrity is fixed through fingerprints computed per split;
each file’s SHA-256 contributes to a split digest, and split
digests are combined into an aggregate dataset fingerprint
d recorded together with dataset name, version or URI,
and a concise license tag. The master seed is defined by Eq.

Jack Sparrow Publishers © 2026, IJCSER, All Rights Reserved

www.jacksparrowpublishers.com

(1) as a deterministic function of the commit c, dataset
fingerprint d, and configuration hash k. Any change in c,
d, or k yields a different seed by construction. During data
loading, expected fingerprints are verified; mismatches
trigger a fail-closed path to prevent silent dataset drift.
Acquisition scripts enforce checksum verification and
provide mirrored sources to withstand repository churn.
The reproduction capsule caches validated snapshots so
that offline execution preserves identical fingerprints and
paths as recorded in the receipt. Table 1 summarizes the
determinism policy and verification checks aligned with
these hashes. The combined procedure establishes a
traceable lineage from inputs to metrics and enables
independent teams to recompute c, d, and k, derive m, and
confirm equivalence without access to the original
environment.

3.3. Signed Provenance Receipt

Each run emits a JSON-LD provenance receipt capturing
VCS commit hash c, container digest, OS/kernel, library
and driver versions, hardware inventory, RNG scope map
with draw counts, dataset fingerprints per split, resolved
hyperparameters, training and evaluation metrics, and
wallclock and energy summaries. The receipt is signed
with  Sigstore/cosign; signatures are validated and
recorded hashes are compared against recomputed values.
Outputs such as checkpoints and logs are bound to inputs
I =c || d |l k and to the execution environment,
establishing a concrete linkage from lineage to results and
enabling trustworthy replication and regression detection.
Verification proceeds as follows: import receipt — validate
signature — recompute d and k and confirm the inputs to
Eg. (1) — match container digest and versioned code —
rerun with the capsule’s deterministic entrypoint —
compare metrics and, where applicable, confirm byte-
identical checkpoints and logits. All steps are
machine-executable and yield unambiguous pass or fail
outcomes. Receipts are embedded in release bundles and
archived under persistent DOIs to ensure long-term
availability and citability. Within continuous integration,
changes are accepted only when the new receipt matches
expected hashes and metrics or when permitted tolerances
are explicitly recorded. Signed provenance converts
reproducibility claims into verifiable facts by replacing
informal descriptions with auditable evidence linked by
cryptographic identities.

3.4. Benchmark Quorum and CI Policy

Repository continuous integration targets evaluation
coverage of at least two public datasets per task with
transparent licensing and scripted access; for named entity
recognition, CoNLL-03 and OntoNotes 5 serve as the target
pair. Continuous integration executes a matrix across
datasets and hardware profiles (CPU and NVIDIA CUDA).
Each job performs training and evaluation inside the

reproduction capsule and compares
O8O
BY NC SA
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outcomes to the signed provenance receipt, checking
dataset and configuration hashes, container digest, metric
values, and checkpoint identities. Replication quality is
reported in three tiers. Tier-A requires byte-identical
checkpoints and logits on matched architectures and
drivers. Tier-B requires metric identity within a tight
tolerance across heterogeneous hardware, for example A <
le-6. Tier-C allows bounded metric drift where
nondeterministic kernels are documented and tolerances
are explicitly set. Policy enforces strict gating: merges are
blocked when any quorum element fails, when
nondeterministic operations are detected by the auditor, or
when recorded and recomputed hashes diverge. Table 1
summarizes the determinism policy (flags, banned ops,
thread binding) enforced by Cl. A multi-benchmark gate
reduces overfitting to a single dataset, exposes
hardware-specific instability before release, and establishes
stable, auditable targets for independent reproduction.

Table 1: Determinism Policy

Policy Aspect Setting Value

Framework torch.use_deterministic_ algo TRUE

determinism rithms

cuDNN torch.backends.cudnn.bench  FALSE

autotune mark

TF32 for torch.backends.cuda.matmu FALSE

matmul lL.allow_tf32

CUBLAS CUBLAS_WORKSPACE_C  :4096:8

workspace ONFIG

RNG control VirtRNG scoped substreams  Enabled

DatalLoader generator passed to Enabled

RNG DatalLoader

Thread OMP_NUM_THREADS / Pinned

binding MKL_NUM_THREADS

Seeding time-based/default seeds Prohibited

Config Hydra — OmegaConf — Verified
canonical JSON hash (k)

Data Per-split SHA-256 Verified
fingerprints (d)

Code VCS commit (c) Pinned &

recorded

Environment  Nix flake lock; container Pinned &
digest verified

Auditor RNG draw accounting; No
nondeterministic ops violations

3.5. Repro Capsules and Verifier

Release artifacts include an OCI image built for multiple
architectures, with a Nix flakes—pinned environment and a
deterministic entrypoint that standardizes execution. An
offline tarball variant mirrors the same image and artifacts
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for air-gapped settings. Verification uses a single
command: reproq verify —capsule
ghcr.io/org/reproquorum:1.0.0 —task ner —bench
conll03,ontonotes5 —config configs/ner/base.yaml -receipt
receipts/ner.json. The verifier runs the capsule, recomputes
configuration and dataset fingerprints, validates
signatures, matches the container digest recorded in the
receipt, and compares reported metrics; output reports
pass/fail and any A in metrics. Image digests are host-
independent;  driver  differences  affect runtime
determinism, not the digest. Capsules decouple
reproduction from local toolchains and operating systems,
while signed image digests together with the signed
receipt make successful replication auditable and citable.
Figure 1 positions capsules within the overall flow from
inputs to signed evidence.

4. Experimental Study

4.1. Experimental Setup

Experiments use two hardware profiles. CPU (32-core
x86_64) and GPU (NVIDIA A100 40 GB). The software
stack is Ubuntu 22.04 LTS with CUDA 12.1 and PyTorch
2.2 (cul2) inside an OCI container. The signed receipt
records the container digest and the Nix flake lock; these
values are inserted verbatim during manuscript build.
Deterministic flags are enabled, VirtRNG scopes are active,
TF32 is disabled for matmul, and thread pools are pinned.
Training uses identical model architectures and
hyperparameters across systems with N =3 replicas per
condition; each run emits a signed JSON-LD receipt.
Evaluation uses token-level F1 for WNUT 2017 and EM/F1
for SQUAD v1.1 with evaluator versions recorded in the
receipt. Continuous integration executes the same capsule
on CPU and CUDA and verifies container, configuration,
and dataset hashes before accepting results.

4.2. Tasks and Datasets

Evaluation covers two tasks: named entity recognition on
WNUT 2017 using the official train/dev/test splits with
token-level F1, and extractive question answering on
SQUAD v1.1 with Exact Match (EM) and F1. Repository
continuous integration targets a > 2-dataset quorum per
task; the experiments reported enforce > 1 dataset per task.
Scripted acquisition performs checksum verification and
computes  per-split SHA-256 fingerprints; these
fingerprints and acquisition script versions are recorded in
signed receipts. Preprocessing is minimal and
deterministic; any text normalization is included in the
fingerprinted artifacts. Dataset licenses and source URIs
are recorded. Identical seeds and canonicalized

configurations (C,d,k) are applied across CPU and

CUDA runs to maintain cross-hardware parity. Table 2
summarizes the reported metrics and replication tiers.
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Table 2: Results And Replication Tiers

Task | Benchmark | Hardware System Metric| Mean | SD Replication Tier
NER | WNUT 2017 CPU mlf-core F1 50.10 | 0.01 |Tier-A (matched); Tier-B
CPU <> CUDA (A<10%)
NER | WNUT 2017 CPU Guix F1 49.80 | 0.01 |Tier-A (matched); Tier-B
CPU <> CUDA (A<10%)
NER | WNUT 2017 CPU ReproQuorum| F1 51.20 | 0.00 | Tier-A (matched); Tier-B
CPU <> CUDA (A<10%)
NER | WNUT 2017 | CUDA |mif-core F1 50.10 | 0.01 | Tier-A (matched); Tier-B
CPU <> CUDA (A<10%)
NER | WNUT 2017 | CUDA |Guix F1 49.80 | 0.01 |Tier-A (matched); Tier-B
CPU <> CUDA (A<10%)
NER | WNUT 2017 | CUDA |ReproQuorum| F1 51.20 | 0.00 | Tier-A (matched); Tier-B
CPU <> CUDA (A<107%)
QA | SQUAD v1.1 CPU mlf-core F1 88.60 | 0.01 | Tier-A (matched); Tier-B
CPU <> CUDA (A<10%)
QA | SQUAD v1.1 CPU mlf-core EM | 80.10 | 0.01 | Tier-A (matched); Tier-B
CPU <> CUDA (A<10%)
QA | SQUAD v1.1 CPU Guix F1 88.40 | 0.01 |Tier-A (matched); Tier-B
CPU <> CUDA (A<107%)
QA | SQUAD v1.1 CPU Guix EM | 80.00 | 0.01 |Tier-A (matched); Tier-B
CPU <> CUDA (A<107%)
QA | SQUAD v1.1 CPU ReproQuorum| F1 89.30 | 0.00 | Tier-A (matched); Tier-B
CPU <> CUDA (A<10%)
QA | SQUAD v1.1 CPU ReproQuorum| EM | 80.70 | 0.00 | Tier-A (matched); Tier-B
CPU <> CUDA (A<107%)
QA | SQUADvV11| CUDA |milf-core F1 88.60 | 0.01 |Tier-A (matched); Tier-B
CPU <> CUDA (A<10%)
QA | SQUADvV11| CUDA |milf-core EM | 80.10 | 0.01 | Tier-A (matched); Tier-B
CPU <> CUDA (A<10%)
QA | SQUADvV11| CUDA |Guix F1 88.40 | 0.01 | Tier-A (matched); Tier-B
CPU <> CUDA (A<107%)
QA | SQUADvV11| CUDA |Guix EM | 80.00 | 0.01 |Tier-A (matched); Tier-B
CPU <> CUDA (A<107%)
QA | SQUAD V11| CUDA |ReproQuorum| F1 89.30 | 0.00 | Tier-A (matched); Tier-B
CPU <> CUDA (A<107%)
QA | SQUAD V11| CUDA |ReproQuorum| EM 80.70 | 0.00 | Tier-A (matched); Tier-B
CPU <> CUDA (A<10%)

4.3. Baselines and Evaluation Protocol

Baselines include mlf-core and a Guix-pinned workflow;

all

systems use the same architecture,

tokenizers,

hyperparameters, batch sizes, and training budgets. For

each dataset-hardware condition,

n=3 replicas are

executed and results are reported as mean * sd; under
determinism, sd is expected to be near zero. Identical
evaluator scripts are used for WNUT 2017 (token-level F1)
and SQUAD v1.1 (EM/F1). Replication tiers are defined as
Tier-A for byte-identical checkpoints and logits on
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matched architectures and Tier-B for metric-identical
results across CPU «» CUDA within A <107°. Continuous
integration requires signed receipts, matching container,
configuration, and dataset hashes, and successful Tier-A/B
replication before merge.

4.4. Main results and Replication Quality

Results show consistent gains with near-zero variance. On
WNUT 2017, token-level F1 is 50.10 + 0.01 for mlf-core
(CPU, CUDA), 49.80 + 0.01 for Guix (CPU, CUDA), and
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51.20 = 0.00 for ReproQuorum (CPU, CUDA), yielding
A F1 = +110 over the strongest baseline.

Matched-architecture reruns produce byte-identical
checkpoints and logits (Tier-A). CPU < CUDA

comparisons meet Tier-B with A <107°.
On SQUAD vl1.1, F1/EM are 88.60 + 0.01/80.10 = 0.01 for
mlf-core, 88.40 + 0.01/80.00 + 0.01 for Guix, and 89.30 +

0.00/80.70 = 0.00 for ReproQuorum, improving by +0.70 F1
and +0.60 EM. CPU « CUDA comparisons satisfy Tier-B

with A <10°°. Table 2 provides the numeric matrix and
replication tiers.

Figure 3: NER {WNUT 2017) token-level F1 by system and hardware

40
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Figure. 2 NER (WNUT 2017) token-level F1 by system and
hardware.

Means across N =3 replicas with sd as error bars;
ReproQuorum improves F1 by +1.10 over the best baseline;
Tier-A on matched architectures; Tier-B across CPU «

CUDA with A <107°.

Figure 4: QA (SQUAD v1.1) EM and F1 by system and hardware
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Figure. 3 QA (SQUAD v1.1) EM and F1 by system and hardware.

Means across N =3 replicas; ReproQuorum improves by
+0.70 F1 and +0.60 EM; Tier-A on matched architectures;
Tier-B across CPU < CUDA.

4.5. Robustness and Cross-Hardware Reproduction

Three stress conditions are evaluated: reordering

augmentation transforms, inserting a no-op transform, and

changing Data Loader workers from 0 — 4. Across these

perturbations, VirtRNG scope isolation keeps metrics

within the predeclared bounds. On WNUT 2017, the

maximum observed change is A F1 = 0.01 for the worker

variation; reordering and no-op yield A F1 = 0.00; all

satisfy A F1 <0.02. On SQuAD v1.1, the largest deviations
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are AF1=0.01 and A EM =0.01 under the worker change;
reordering and no-op produce AF1 = 0.00 and A EM =
0.00; all satisfy A F1 < 0.02 and A EM < 0.02. CPU «
CUDA comparisons retain Tier-B agreement for every

replica and perturbation with A <107°.

Figure 5: Robustness ta perturbations (reorder, no-op, warkers)
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Figure. 4 Robustness to perturbations (reorder, no-op, workers).

Observed A versus bound 0.02 for WNUT 2017 (F1) and
SQUAD v1.1 (EM/F1); replication tiers unchanged.

Auditor logs confirm that 100 of random draws were
routed through VIirtRNG, no time-based seeds were
present, and deterministic kernels remained enabled. Table
3 provides a compact summary of perturbations and
observed A.

Table 3: Stress tests (reordering, no-op, worker changes)

Perturbation Datas Me Obser Tier change
et tric ved A
Reorder WNU F1 0 No change
augmentation T 2017 (Tier-A — A)
transforms
Insert no-op WNU F1 0 No change
transform T 2017 (Tier-A — A)
Change WNU F1 0.01  Nochange
DatalLoader T 2017 (Tier-A — A)
workers 0 — 4
Reorder SQUA F1 0 No change
augmentation Dvil1l (Tier-A — A)
transforms
Reorder SQUA EM 0 No change
augmentation Dvil1l (Tier-A — A)
transforms
Insert no-op SQUA F1 0 No change
transform Dvil (Tier-A — A)
Insert no-op SQUA EM 0 No change
transform Dvil (Tier-A — A)
Change SQUA F1 0.01 Nochange
DatalLoader Dvil1l (Tier-A — A)
workers 0 — 4
Change SQUA EM 0.01 Nochange
DatalLoader Dvil1l (Tier-A — A)

workers 0 — 4

G0
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4.6. External Verification and Efficiency

Independent replication using the released capsule and
signed receipt on a host with a different CUDA driver
minor version (12.2 vs 121) and a different CPU
microarchitecture validates all signatures. The container
digest matches the receipt value; image digests are
host-independent. Metrics reproduce within Tier-B

agreement (A <10°%) for WNUT 2017 F1 and SQUAD v1.1
EM/FL1. Practical overheads remain modest: the multi-arch
capsule is 3.1 GB, the signed receipt is 120 KB, and the
runtime overhead attributable to determinism and
verification is < 3 relative to a non-audited run. A short
reproduction certificate was issued that records the
commit hash, the container digest, per-split dataset
fingerprints, and the achieved replication tier, providing
portable evidence of successful external verification.

5. Conclusion and Future Scope

ReproQuorum delivers a signed, scope-deterministic
pipeline that binds outcomes to recorded content rather
than machine conditions. Experiments on WNUT 2017 and
SQUAD v1.1 show consistent gains over strong
deterministic baselines and achieve Tier-A on matched
architectures and Tier-B across CPU—CUDA with
A = 107°. Repository continuous integration targets a >
2-dataset quorum per task; the reported experiments
evaluate one dataset per task, with multi-dataset
enforcement planned in future releases. Bitwise
determinism remains sensitive to specific kernel
implementations; some operators expose nondeterministic
paths on certain drivers or devices. Dataset mirroring
imposes storage and bandwidth costs, and environment
locks can constrain upgrade cadence. Planned extensions
include reinforcement learning and online training with
scope-deterministic exploration, federated deployments
with privacy-preserving receipts, automated repair of
nondeterministic kernels during Cl, and integration with
verifiable  evaluation methods and standardized
multi-benchmark governance.
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