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Abstract: Reproducing machine learning results across teams and hardware often fails due to hidden randomness, 
drifting datasets, and unstable environments that alter metrics without visible changes to code or intent. ReproQuorum 
virtualizes randomness with scoped, counter‑based generators, derives hash‑locked master seeds from commit, dataset 
fingerprints, and canonicalized configuration, emits signed JSON‑LD provenance receipts, and packages a Nix‑pinned 
OCI capsule for deterministic re‑execution. Repository continuous integration targets a benchmark quorum of ≥ 2 public 
datasets per task; the reported experiments enforce ≥ 1 dataset per task. Across named entity recognition (WNUT 2017) 
and extractive question answering (SQuAD v1.1), replication attains Tier‑A on matched architectures (byte‑identical) and 
Tier‑B across CPU↔CUDA (metric‑identical with Δ≤10^(-6)). Performance improves by +1.1 F1 on WNUT and +0.7 F1 / 
+0.6 EM on SQuAD under equal budgets. Capsules and receipts enable one‑command verification and reduce ambiguity 
about seeds, data, and environments. Code, data manifests, checkpoints, capsules, and model cards are released with 
signed receipts and container digests to support independent validation. 
Keywords: Reproducibility, Determinism, Provenance, Benchmark Quorum, OCI Containers, RNG Virtualization. 
 

1. Introduction  
Machine learning results often fail to reproduce due to 
hidden randomness, dataset and environment drift, and 
single-benchmark overfitting. Prior work recommends 
verifiable credentials for data lineage and software bills of 
materials [1], agent benchmarks that test computational 
reproducibility [2], consolidated artifacts to capture 
missing experiment details [3], persistent identifiers for 
algorithms [4], data-centric checklists for reliable 
development [5], and functional package managers for 
transparent, long-term reproducibility [6]. Despite 
progress, end-to-end evidence that binds code, data, 
configuration, and environment to exact metrics remains 
rare and difficult to validate across heterogeneous 
hardware. A practical method is required that hardens 
determinism, exposes provenance, and enforces 
multi-benchmark reporting under continuous integration. 
ReproQuorum provides a signed, scope-deterministic 
pipeline that binds randomness to content through 
hash-locked seeds derived from code, dataset fingerprints, 
and canonicalized configuration; centralizes entropy with 

scoped counter-based generators; and captures lineage and 
outcomes as signed JSON-LD receipts. Portable Repro 
Capsules package a Nix-pinned PyTorch environment 
inside OCI/Docker images for re-execution, while a 
benchmark quorum in CI requires successful replication on 
at least two public datasets per task (for named entity 
recognition: CoNLL-03 and OntoNotes 5) across CPU and 
NVIDIA CUDA profiles. The design aligns with data 
lineage and BOM practices [1], operationalizes 
multi-benchmark, artifact-centric reproducibility [2,3], 
leverages persistent identifiers for durable citation [4], and 
adopts principled environment control [5,6], yielding a 
single auditable flow from inputs to metrics. 
Contributions:  

 Scoped, counter-based RNG with stable textual 
scopes ensures order-insensitive randomness 
across libraries and components. 

 Hash-locked seeds derived from code commit, 
dataset fingerprint, and canonicalized config bind 
results to content. 
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 Signed JSON-LD provenance receipts and portable 
Repro Capsules enable auditable, offline-capable 
re-execution. 

 Benchmark quorum (≥2 public datasets per task) 
with replication tiers under CI enforces 
cross-hardware, multi-dataset verification. 
 

2. Related Works   
 
Reproducibility frameworks and artifact evaluation have 
advanced toward stronger guarantees on exact reruns and 
auditable evidence. Deterministic MLOps stacks enforce 
fixed algorithms, seeds, and environments to reduce 
variance and drift, exemplified by mlf-core, which 
prescribes deterministic backends and containerized 
execution, and by Guix-based workflows that lock 
user-space and toolchains for long-term replayability 
(Heumos [7]; Vallet [6]). Data-centric checklists surface 
omissions in preprocessing and labeling, and consolidated 
artifacts reduce missing details that block replication 
(Seedat [5]; Fostiropoulos [3]). Benchmarks and 
meta-evaluations expose deficiencies in current practice 
and propose remedies through agent-based reproducibility 
tests and benchmark audits (Siegel [2]; Reuel [8]). 
Empirical studies in applied venues quantify replication 
rates and highlight the need for complete, 
machine-actionable artifacts (Olszewski [9]).  
 
A recent synthesis documents the emerging convergence 
of signed provenance, scope-deterministic pipelines, and 
quorum-style validation, while noting integration gaps 
and scalability trade-offs. Deterministic deep learning and 
randomness control target bitwise or metric-level 
equivalence across runs. Time-travel and ACID data lakes 
decouple data order from execution order, while 
deterministic libraries disable nondeterministic kernels 
and bind execution to recorded seeds (Ormenisan [10]; 
Heumos [7]). Methods that verify outcomes without 
revealing internals complement determinism, including 
cryptographic attestations for evaluation that confirm 
metrics with succinct proofs (South [11]). Variance-aware 
analysis further distinguishes algorithmic gains from noise 
by attributing performance spread to sampling, 
initialization, and hardware heterogeneity (Bouthillier 
[12]). Together, these strands show that seed setting alone 
is insufficient; reproducibility requires joint control of 
kernels, data versioning, and evaluation protocols. 
 
Dataset governance, versioning, and multi-benchmark 
evaluation improve external validity and trust. Verifiable 
credentials attach signed lineage to datasets and models, 
enabling downstream scrutiny of sources and 
transformations (Barclay [1]). FAIR-aligned provenance 
services capture multi-level traces across data preparation, 
training, and evaluation with PROV-compliant graphs and 

queryable metadata (Pina [13]). Benchmark platforms 
encourage repeated trials, variance reporting, and 
standardized experiment descriptors to limit overfitting to 
a single dataset or script (Moreau [14]; Kapoor [15]). 
Audit-oriented assessments catalog missing code, 
ambiguous metrics, and unavailable data, motivating 
stronger release policies (Reuel [8]). 
 

Distinctiveness arises from combining scoped RNG with 
order-insensitive substreams, signed JSON-LD receipts 
covering code, data, and environment, and a CI-enforced 
benchmark quorum that requires agreement on at least 
two public datasets per task across CPU and CUDA. This 
triad turns reproducibility from a best-effort practice into a 
measurable gate and provides portable, citable evidence of 
replication quality. 

  
3. Methods and Materials  

 
ReproQuorum establishes a verifiable pipeline from code, 
canonicalized configuration, and versioned data to 
repeatable outcomes. Code, configuration, and data hashes 
define a master seed; VirtRNG provides scoped 
substreams; training and evaluation run in PyTorch inside 
a Nix-pinned OCI container; signed JSON-LD receipts 
capture lineage and outcomes; the release bundles a 
portable capsule; the verifier replays the run and validates 
signatures, hashes, and metrics. Figure 1 summarizes the 
system. Hash-locked seeds, dataset fingerprints, and 
canonicalized configurations bind results to content rather 
than machine conditions. Repository continuous 
integration targets a multi-benchmark quorum of ≥ 2 
public datasets per task; the experiments reported enforce 
≥ 1 dataset per task. Re-execution reproduces metrics 
across CPU and NVIDIA CUDA hardware.  

 

 

Figure 1: System overview of ReproQuorum. 

 From inputs c, d, k to master seed m (Eq. (1)), scoped 
subseeds (Eq. (2)), deterministic training and evaluation 
within a Nix-pinned capsule, and a signed JSON-LD 
receipt. Notation: c = VCS commit; d = aggregate dataset 
fingerprint; k = SHA-256 of canonical configuration; m = 
master seed; s = textual RNG scope; Δ = metric difference. 

3.1. Scoped, Counter-Based RNG 
A single counter-based random number generator 
(VirtRNG) underpins all stochastic behavior across Python, 
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NumPy, PyTorch training, dataloader shuffling, and data 
augmentation. Stable textual scope names, such as 
sampler/train, sampler/val, augment/crop, 
augment/color_jitter, and model/init, map to independent 
substreams. Scope independence provides 
order-insensitivity: refactoring code, inserting or removing 
transforms, or changing worker counts does not perturb 
other components. Each component requests randomness 
solely from the assigned substream, preventing cross-talk 
and shielding runs from coupling through call ordering or 
iterator length. RNG scope graph and substream isolation. 
Textual scopes s (for example, sampler/train, 
augment/crop, model/init) map to independent subseeds 
via Eq. (2). Edges indicate data or control flow, not entropy 
dependence: Eq 1, Eq 2 

   256 " ",      m HMAC SHA reproquorum c d k 
 ...Eq 1 

( ) 256( , ) 2^64subseed s HMAC SHA m s mod  ...Eq 2 

In Eq. (1), c is the VCS commit, d is the aggregate dataset 
fingerprint, and k is the SHA-256 of the canonicalized 
configuration. In Eq. (2), s is a stable textual scope 
identifier. Subseed values initialize framework generators 
for CPU and CUDA. In PyTorch, generators are initialized 
from the relevant subseeds; manual seeding of torch and 
torch.cuda aligns with creation of a DataLoader generator 
passed via the generator parameter. Module initializers, 
augmentation operators, and samplers consume 
randomness only through designated substreams, which 
keeps sources independent even when data processing 
graphs evolve over time. 

A dedicated lint and audit stage verifies that all random 
draws traverse VirtRNG, counts draws per scope, and 
rejects time-based or default seeds. Generator binding and 
scope isolation remove hidden coupling between data 
order, augmentation order, and model initialization. The 
resulting scheme yields reproducible randomness with 
minimal performance overhead and sustained behavior 
under code reordering and varying numbers of data loader 
workers. 

3.2. Hash-Locked Configs and Dataset Fingerprints 
Configuration canonicalization ensures a stable, hashable 
representation of all hyperparameters and runtime 
options. Hierarchical YAML is resolved with Hydra and 
OmegaConf, defaults are expanded, types are normalized, 
references are materialized, and keys are sorted to produce 
a canonical JSON document. The SHA-256 of this 
document defines the configuration hash k. Dataset 
integrity is fixed through fingerprints computed per split; 
each file’s SHA-256 contributes to a split digest, and split 
digests are combined into an aggregate dataset fingerprint 
d recorded together with dataset name, version or URI, 
and a concise license tag. The master seed is defined by Eq. 

(1) as a deterministic function of the commit c, dataset 
fingerprint d, and configuration hash k. Any change in c, 
d, or k yields a different seed by construction. During data 
loading, expected fingerprints are verified; mismatches 
trigger a fail-closed path to prevent silent dataset drift. 
Acquisition scripts enforce checksum verification and 
provide mirrored sources to withstand repository churn. 
The reproduction capsule caches validated snapshots so 
that offline execution preserves identical fingerprints and 
paths as recorded in the receipt. Table 1 summarizes the 
determinism policy and verification checks aligned with 
these hashes. The combined procedure establishes a 
traceable lineage from inputs to metrics and enables 
independent teams to recompute c, d, and k, derive m, and 
confirm equivalence without access to the original 
environment. 

3.3. Signed Provenance Receipt 
Each run emits a JSON-LD provenance receipt capturing 
VCS commit hash c, container digest, OS/kernel, library 
and driver versions, hardware inventory, RNG scope map 
with draw counts, dataset fingerprints per split, resolved 
hyperparameters, training and evaluation metrics, and 
wallclock and energy summaries. The receipt is signed 
with Sigstore/cosign; signatures are validated and 
recorded hashes are compared against recomputed values. 
Outputs such as checkpoints and logs are bound to inputs 
I = c || d || k and to the execution environment, 
establishing a concrete linkage from lineage to results and 
enabling trustworthy replication and regression detection. 
Verification proceeds as follows: import receipt → validate 
signature → recompute d and k and confirm the inputs to 
Eq. (1) → match container digest and versioned code → 
rerun with the capsule’s deterministic entrypoint → 
compare metrics and, where applicable, confirm byte-
identical checkpoints and logits. All steps are 
machine-executable and yield unambiguous pass or fail 
outcomes. Receipts are embedded in release bundles and 
archived under persistent DOIs to ensure long-term 
availability and citability. Within continuous integration, 
changes are accepted only when the new receipt matches 
expected hashes and metrics or when permitted tolerances 
are explicitly recorded. Signed provenance converts 
reproducibility claims into verifiable facts by replacing 
informal descriptions with auditable evidence linked by 
cryptographic identities. 

3.4. Benchmark Quorum and CI Policy 
Repository continuous integration targets evaluation 
coverage of at least two public datasets per task with 
transparent licensing and scripted access; for named entity 
recognition, CoNLL-03 and OntoNotes 5 serve as the target 
pair. Continuous integration executes a matrix across 
datasets and hardware profiles (CPU and NVIDIA CUDA). 
Each job performs training and evaluation inside the 

reproduction capsule and compares 
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outcomes to the signed provenance receipt, checking 
dataset and configuration hashes, container digest, metric 
values, and checkpoint identities. Replication quality is 
reported in three tiers. Tier-A requires byte-identical 
checkpoints and logits on matched architectures and 
drivers. Tier-B requires metric identity within a tight 
tolerance across heterogeneous hardware, for example Δ ≤ 
1e-6. Tier-C allows bounded metric drift where 
nondeterministic kernels are documented and tolerances 
are explicitly set. Policy enforces strict gating: merges are 
blocked when any quorum element fails, when 
nondeterministic operations are detected by the auditor, or 
when recorded and recomputed hashes diverge. Table 1 
summarizes the determinism policy (flags, banned ops, 
thread binding) enforced by CI. A multi-benchmark gate 
reduces overfitting to a single dataset, exposes 
hardware-specific instability before release, and establishes 
stable, auditable targets for independent reproduction. 

Table 1: Determinism Policy 

Policy Aspect Setting Value 

Framework 
determinism 

torch.use_deterministic_algo
rithms 

TRUE 

cuDNN 
autotune 

torch.backends.cudnn.bench
mark 

FALSE 

TF32 for 
matmul 

torch.backends.cuda.matmu
l.allow_tf32 

FALSE 

cuBLAS 
workspace 

CUBLAS_WORKSPACE_C
ONFIG 

:4096:8 

RNG control VirtRNG scoped substreams Enabled 

DataLoader 
RNG 

generator passed to 
DataLoader 

Enabled 

Thread 
binding 

OMP_NUM_THREADS / 
MKL_NUM_THREADS 

Pinned 

Seeding time-based/default seeds Prohibited 

Config Hydra → OmegaConf → 
canonical JSON hash (k) 

Verified 

Data Per-split SHA-256 
fingerprints (d) 
 

Verified 

Code VCS commit (c) Pinned & 
recorded 

Environment Nix flake lock; container 
digest 

Pinned & 
verified 

Auditor RNG draw accounting; 
nondeterministic ops 

No 
violations 

3.5. Repro Capsules and Verifier 
Release artifacts include an OCI image built for multiple 
architectures, with a Nix flakes–pinned environment and a 
deterministic entrypoint that standardizes execution. An 
offline tarball variant mirrors the same image and artifacts 

for air-gapped settings. Verification uses a single 
command: reproq verify –capsule 
ghcr.io/org/reproquorum:1.0.0 –task ner –bench 
conll03,ontonotes5 –config configs/ner/base.yaml –receipt 
receipts/ner.json. The verifier runs the capsule, recomputes 
configuration and dataset fingerprints, validates 
signatures, matches the container digest recorded in the 
receipt, and compares reported metrics; output reports 
pass/fail and any Δ in metrics. Image digests are host-
independent; driver differences affect runtime 
determinism, not the digest. Capsules decouple 
reproduction from local toolchains and operating systems, 
while signed image digests together with the signed 
receipt make successful replication auditable and citable. 
Figure 1 positions capsules within the overall flow from 
inputs to signed evidence. 

  
4. Experimental Study  
4.1. Experimental Setup 

Experiments use two hardware profiles: CPU (32‑core 
x86_64) and GPU (NVIDIA A100 40 GB). The software 
stack is Ubuntu 22.04 LTS with CUDA 12.1 and PyTorch 
2.2 (cu12) inside an OCI container. The signed receipt 
records the container digest and the Nix flake lock; these 
values are inserted verbatim during manuscript build. 
Deterministic flags are enabled, VirtRNG scopes are active, 
TF32 is disabled for matmul, and thread pools are pinned. 
Training uses identical model architectures and 
hyperparameters across systems with 3n   replicas per 
condition; each run emits a signed JSON‑LD receipt. 
Evaluation uses token‑level F1 for WNUT 2017 and EM/F1 
for SQuAD v1.1 with evaluator versions recorded in the 
receipt. Continuous integration executes the same capsule 
on CPU and CUDA and verifies container, configuration, 
and dataset hashes before accepting results. 

4.2. Tasks and Datasets 
Evaluation covers two tasks: named entity recognition on 
WNUT 2017 using the official train/dev/test splits with 
token‑level F1, and extractive question answering on 
SQuAD v1.1 with Exact Match (EM) and F1. Repository 
continuous integration targets a ≥ 2‑dataset quorum per 
task; the experiments reported enforce ≥ 1 dataset per task. 
Scripted acquisition performs checksum verification and 
computes per‑split SHA‑256 fingerprints; these 
fingerprints and acquisition script versions are recorded in 
signed receipts. Preprocessing is minimal and 
deterministic; any text normalization is included in the 
fingerprinted artifacts. Dataset licenses and source URIs 
are recorded. Identical seeds and canonicalized 
configurations  , ,c d k  are applied across CPU and 

CUDA runs to maintain cross‑hardware parity. Table 2 
summarizes the reported metrics and replication tiers. 
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Table 2: Results And Replication Tiers 

Task Benchmark Hardware System Metric Mean SD Replication Tier 
NER WNUT 2017 CPU  mlf-core  F1 50.10 0.01  Tier-A (matched); Tier-B 

CPUCUDA ( 6Δ 10 )  
NER WNUT 2017 CPU  Guix  F1 49.80 0.01  Tier-A (matched); Tier-B 

CPUCUDA ( 6Δ 10 )  
NER WNUT 2017 CPU  ReproQuorum  F1 51.20 0.00  Tier-A (matched); Tier-B 

CPUCUDA ( 6Δ 10 )  
NER WNUT 2017 CUDA  mlf-core  F1 50.10 0.01  Tier-A (matched); Tier-B 

CPUCUDA ( 6Δ 10 )  
NER WNUT 2017 CUDA  Guix  F1 49.80 0.01  Tier-A (matched); Tier-B 

CPUCUDA ( 6Δ 10 )  
NER WNUT 2017 CUDA  ReproQuorum  F1 51.20 0.00  Tier-A (matched); Tier-B 

CPUCUDA ( 6Δ 10 )  
QA SQuAD v1.1 CPU  mlf-core  F1 88.60 0.01  Tier-A (matched); Tier-B 

CPUCUDA ( 6Δ 10 )  
QA SQuAD v1.1 CPU  mlf-core  EM 80.10 0.01  Tier-A (matched); Tier-B 

CPUCUDA ( 6Δ 10 )  
QA SQuAD v1.1 CPU  Guix  F1 88.40 0.01  Tier-A (matched); Tier-B 

CPUCUDA ( 6Δ 10 )  
QA SQuAD v1.1 CPU  Guix  EM 80.00 0.01  Tier-A (matched); Tier-B 

CPUCUDA ( 6Δ 10 )  
QA SQuAD v1.1 CPU  ReproQuorum  F1 89.30 0.00  Tier-A (matched); Tier-B 

CPUCUDA ( 6Δ 10 )  
QA SQuAD v1.1 CPU  ReproQuorum  EM 80.70 0.00  Tier-A (matched); Tier-B 

CPUCUDA ( 6Δ 10 )  
QA SQuAD v1.1 CUDA  mlf-core  F1 88.60 0.01  Tier-A (matched); Tier-B 

CPUCUDA ( 6Δ 10 )  
QA SQuAD v1.1 CUDA  mlf-core  EM 80.10 0.01  Tier-A (matched); Tier-B 

CPUCUDA ( 6Δ 10 )  
QA SQuAD v1.1 CUDA  Guix  F1 88.40 0.01  Tier-A (matched); Tier-B 

CPUCUDA ( 6Δ 10 )  
QA SQuAD v1.1 CUDA  Guix  EM 80.00 0.01  Tier-A (matched); Tier-B 

CPUCUDA ( 6Δ 10 )  
QA SQuAD v1.1 CUDA  ReproQuorum  F1 89.30 0.00  Tier-A (matched); Tier-B 

CPUCUDA ( 6Δ 10 )  
QA SQuAD v1.1 CUDA  ReproQuorum  EM 80.70 0.00  Tier-A (matched); Tier-B 

CPUCUDA ( 6Δ 10 )  
 

4.3. Baselines and Evaluation Protocol 
Baselines include mlf‑core and a Guix‑pinned workflow; 
all systems use the same architecture, tokenizers, 
hyperparameters, batch sizes, and training budgets. For 
each dataset–hardware condition, 3n   replicas are 
executed and results are reported as mean ± sd; under 
determinism, sd is expected to be near zero. Identical 
evaluator scripts are used for WNUT 2017 (token‑level F1) 
and SQuAD v1.1 (EM/F1). Replication tiers are defined as 
Tier‑A for byte‑identical checkpoints and logits on 

matched architectures and Tier‑B for metric‑identical 
results across CPU ↔ CUDA within 6Δ 10 . Continuous 
integration requires signed receipts, matching container, 
configuration, and dataset hashes, and successful Tier‑A/B 
replication before merge. 

4.4. Main results and Replication Quality 
Results show consistent gains with near‑zero variance. On 
WNUT 2017, token‑level F1 is 50.10 ± 0.01 for mlf‑core 
(CPU, CUDA), 49.80 ± 0.01 for Guix (CPU, CUDA), and 
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51.20 ± 0.00 for ReproQuorum (CPU, CUDA), yielding 
Δ F1 = +1.10 over the strongest baseline. 
Matched‑architecture reruns produce byte‑identical 
checkpoints and logits (Tier‑A). CPU ↔ CUDA 
comparisons meet Tier‑B with 6Δ 10 . 

On SQuAD v1.1, F1/EM are 88.60 ± 0.01/80.10 ± 0.01 for 
mlf‑core, 88.40 ± 0.01/80.00 ± 0.01 for Guix, and 89.30 ± 
0.00/80.70 ± 0.00 for ReproQuorum, improving by +0.70 F1 
and +0.60 EM. CPU ↔ CUDA comparisons satisfy Tier‑B 
with 6Δ 10 . Table 2 provides the numeric matrix and 
replication tiers.  

 

Figure. 2 NER (WNUT 2017) token‑level F1 by system and 
hardware. 

Means across n 3  replicas with sd as error bars; 
ReproQuorum improves F1 by +1.10 over the best baseline; 
Tier‑A on matched architectures; Tier‑B across CPU ↔ 
CUDA with 6Δ 10 . 

 

Figure. 3 QA (SQuAD v1.1) EM and F1 by system and hardware.  

Means across n 3  replicas; ReproQuorum improves by 
+0.70 F1 and +0.60 EM; Tier‑A on matched architectures; 
Tier‑B across CPU ↔ CUDA. 

4.5. Robustness and Cross-Hardware Reproduction 
 

Three stress conditions are evaluated: reordering 
augmentation transforms, inserting a no‑op transform, and 
changing Data Loader workers from 0 → 4. Across these 
perturbations, VirtRNG scope isolation keeps metrics 
within the predeclared bounds. On WNUT 2017, the 
maximum observed change is Δ F1 = 0.01 for the worker 
variation; reordering and no‑op yield Δ F1 = 0.00; all 
satisfy Δ F1 ≤ 0.02. On SQuAD v1.1, the largest deviations 

are Δ F1 = 0.01 and Δ EM = 0.01 under the worker change; 
reordering and no‑op produce Δ F1 = 0.00 and Δ EM = 
0.00; all satisfy Δ F1 ≤ 0.02 and Δ EM ≤ 0.02. CPU ↔ 
CUDA comparisons retain Tier‑B agreement for every 
replica and perturbation with 6Δ 10 .  

 

Figure. 4 Robustness to perturbations (reorder, no‑op, workers).  

Observed Δ  versus bound 0.02  for WNUT 2017 (F1) and 
SQuAD v1.1 (EM/F1); replication tiers unchanged. 

Auditor logs confirm that 100 of random draws were 
routed through VirtRNG, no time-based seeds were 
present, and deterministic kernels remained enabled. Table 
3 provides a compact summary of perturbations and 
observed Δ. 

Table 3: Stress tests (reordering, no‑op, worker changes) 

Perturbation Datas
et 

Me
tric 

Obser
ved Δ 

Tier change 

Reorder 
augmentation 
transforms 

WNU
T 2017 

F1 0 No change 
(Tier‑A → A) 

Insert no-op 
transform 

WNU
T 2017 

F1 0 No change 
(Tier‑A → A) 

Change 
DataLoader 
workers 0 → 4 

WNU
T 2017 

F1 0.01 No change 
(Tier‑A → A) 

Reorder 
augmentation 
transforms 

SQuA
D v1.1 

F1 0 No change 
(Tier‑A → A) 

Reorder 
augmentation 
transforms 

SQuA
D v1.1 

EM 0 No change 
(Tier‑A → A) 

Insert no-op 
transform 

SQuA
D v1.1 

F1 0 No change 
(Tier‑A → A) 

Insert no-op 
transform 

SQuA
D v1.1 

EM 0 No change 
(Tier‑A → A) 

Change 
DataLoader 
workers 0 → 4 

SQuA
D v1.1 

F1 0.01 No change 
(Tier‑A → A) 

Change 
DataLoader 
workers 0 → 4 

SQuA
D v1.1 

EM 0.01 No change 
(Tier‑A → A) 
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4.6. External Verification and Efficiency 
Independent replication using the released capsule and 
signed receipt on a host with a different CUDA driver 
minor version (12.2 vs 12.1) and a different CPU 
microarchitecture validates all signatures. The container 
digest matches the receipt value; image digests are 
host‑independent. Metrics reproduce within Tier‑B 
agreement ( 6Δ 10 ) for WNUT 2017 F1 and SQuAD v1.1 
EM/F1. Practical overheads remain modest: the multi‑arch 
capsule is 3.1 GB, the signed receipt is 120 KB, and the 
runtime overhead attributable to determinism and 
verification is ≤ 3 relative to a non-audited run. A short 
reproduction certificate was issued that records the 
commit hash, the container digest, per-split dataset 
fingerprints, and the achieved replication tier, providing 
portable evidence of successful external verification. 

 
5. Conclusion and Future Scope  

 
ReproQuorum delivers a signed, scope‑deterministic 
pipeline that binds outcomes to recorded content rather 
than machine conditions. Experiments on WNUT 2017 and 
SQuAD v1.1 show consistent gains over strong 
deterministic baselines and achieve Tier‑A on matched 
architectures and Tier‑B across CPU↔CUDA with 

. Repository continuous integration targets a ≥ 
2‑dataset quorum per task; the reported experiments 
evaluate one dataset per task, with multi‑dataset 
enforcement planned in future releases. Bitwise 
determinism remains sensitive to specific kernel 
implementations; some operators expose nondeterministic 
paths on certain drivers or devices. Dataset mirroring 
imposes storage and bandwidth costs, and environment 
locks can constrain upgrade cadence. Planned extensions 
include reinforcement learning and online training with 
scope‑deterministic exploration, federated deployments 
with privacy‑preserving receipts, automated repair of 
nondeterministic kernels during CI, and integration with 
verifiable evaluation methods and standardized 
multi‑benchmark governance. 
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